过去十年间,几项技术的进步使人工智能 (AI)成为最令人振奋的技术之一。2012年,Geoffrey Everest Hinton在Imagenet挑战赛中展示了他的广义反向传播神经网络算法,该算法使计算机视觉领域发生了革命性变化。然而,机器学习理论早在2012年之前就有人提出,并且Nvidia GTX 580图形处理器单元等微处理器使这一理论得以实现。这些处理器具有相对较高的内存带宽能力且擅长矩阵乘法,可将该神经网络模型的AI训练时间缩短至大约一周。理论与算法的结合开启了新一代技术进步,带来了与AI相关的全新可能性。本文概述了人工智能设计新时代及其多样化处理、内存和连接需求。
人工智能剖析
我们将神经网络定义为深度学习,它是机器学习及人工智能的一个子集,如图1所示。这是一个重要的分类,深度学习该子集改变了芯片系统架构设计。
图1:人工智能采用深度学习算法模仿人类行为
深度学习不仅改变了芯片架构,而且催生了半导体市场的新一轮投资。深度学习算法模型是研发和商业投资的热点,例如卷积神经网络 (CNN)。CNN一直是机器视觉的主要焦点。递归神经网络等模型因其识别时间的能力而在自然语言理解中得以应用。
人工智能的应用
深度学习神经网络应用于许多不同的场景,为使用它们的人提供了强大的新工具。例如,它们可以支持高级安全威胁分析、预测和防止安全漏洞,并通过预测潜在买家的购物流程来帮助广告商识别和精简销售流程。
但AI设计并未局限于数据中心,诸如用于物件和人脸识别的视觉系统、用于改进人机接口的自然语言理解以及周围环境感知等许多新功能可基于传感器输入的组合而使机器理解正在发生的活动。这些深度学习能力已融入到不同场景所需的芯片设计中,包括智能汽车、数字家庭、数据中心和物联网 (IoT),如图2所示。
图2:AI处理能力已结合到大量应用中
手机利用神经网络实现上述多种AI功能。手机可运行人脸识别应用、物件识别应用、自然语言理解应用。此外,它在内部使用神经网络进行5G自组织,因为无线信号在其他介质、不同的光谱上会变得更密集,并且所传输的数据有不同的优先级。
人类大脑
最近,深度学习通过数学和半导体硬件的进步变得可行。业界已开展多项举措,在下一代数学模型和半导体架构中更好地复制人脑,这通常被称为神经形态计算。人类的大脑可以达到难以置信的高效率,但技术在复制人类大脑等方面才刚开始触及皮毛。人类大脑包含超过1 PB (Petabyte=1024TB)的存储空间,相当于大约540万亿个晶体管,且功率小于12瓦。从这点来说,复制大脑是一个长远的目标。然而,ImageNet挑战赛已从2012年的第一个反向传播CNN算法发展到2015年更高级的AI模型ResNet 152,市场正在快速发展,新的算法层出不穷。
AI设计挑战
融合深度学习能力的芯片架构促使了多项关键技术的进步,从而达到高度集成的解决方案和更通用的AI 芯片,包含专用处理需求、创新内存架构和实时数据连接。
专用处理需求
融合神经网络能力的芯片必须同时适应异构和大规模并行矩阵乘法运算。异构组件需要标量、矢量DSP和神经网络算法能力。例如,机器视觉需要独立的步骤,每一步都需要执行不同类型的处理,如图3所示。
图3:神经网络能力需要独特的处理
预处理需要更简单的数据级并行性。对所选区域的精确处理需要更复杂的数据级并行性,可以通过具有良好矩阵乘法运算能力的专用CNN加速器有效地处理。决策阶段通常可以通过标量处理的方式来处理。每个应用都是独一无二的,但很明显的是,包括神经网络算法加速的异构处理解决方案需要有效地处理AI模型。
创新内存架构
AI模型使用大量内存,这增加了芯片的成本。训练神经网络要求达到几GB甚至10GB的数据,这就需要使用DDR最新技术,以满足容量要求,例如,作为图像神经网络的VGG-16在训练时需要大约9GB的内存;更精确的模型VGG-512需要89GB的数据才能进行训练。为了提高AI模型的准确性,数据科学家使用了更大的数据集。同样,这会增加训练模型所需的时间或增加解决方案的内存需求。由于需要大规模并行矩阵乘法运算以及模型的大小和所需系数的数量,这就要求配备具有高带宽存取能力的外部存储器及新的半导体接口IP,如高带宽存储器 (HBM2)和衍生产品 (HBM2e)。先进的FinFET技术支持更大的芯片SRAM阵列和独特的配置,具有定制的存储器到处理器和存储器到存储器接口,这些技术正在开发中,为了更好地复制人脑并消除存储器的约束。
AI模型可以压缩,确保模型在位于手机、汽车和物联网应用边缘的芯片中受限的存储器架构上运行所必需的。压缩采用剪枝和量化技术进行且不能降低结果的准确性,这就要求传统芯片架构(具有LPDDR或在某些情况下没有外部存储器)支持神经网络。随着这些模型的压缩,不规则的存储器存取和计算强度增加,延长了系统的执行时间。因此,系统设计人员正在开发创新的异构存储器架构。
实时数据连接
一旦AI模型经过训练并可能被压缩,就可以通过许多不同的接口IP解决方案执行实时数据。例如,视觉应用由CMOS图像传感器支持,并通过MIPI摄像头串行接口 (CSI-2)和MIPI D-PHY IP连接。LiDAR和雷达可通过多种技术支持,包括PCI Express和MIPI。麦克风通过USB、脉冲密度调制 (PDM) 和I2S等连接传输语音数据。数字电视支持HDMI和DisplayPort连接,以传输视频内容,而这些内容可通过神经网络传输后得到改善,实现超高图像分辨率,从而以更少的数据生成更高质量的图像。目前,大多数电视制造商正在考虑部署这项技术。
混合AI系统是另一个预计会大量采用的概念。例如,心率算法通过健身带上的AI系统可以识别异常,通过将信息发送到云端,对异常进行更准确的深入AI神经网络分析,并加以提示。这类技术已经成功地应用于电网负载的平衡,特别是在电线中断或出现意外重负荷的情况下。为了支持快速、可靠的网络与云端连接,上述示例中的聚合器需要以太网连接。
消除瓶颈
尽管复制人类大脑还有很长的路要走,但人类大脑已被用作构建人工智能系统的有效模型,并继续由全球领先的研究机构来建模。最新的神经网络试图复制效率和计算能力,芯片架构也开始通过紧密耦合处理器和内存来复制人类大脑。ARC子系统包括AI及其APEX扩展和普遍存在的RISC架构所需的处理能力。子系统将外设和存储器紧密耦合到处理器,以消除关键的存储器瓶颈问题。
用于AI的DesignWare IP
AI是最令人振奋的技术之一,特别是深度学习神经网络,通过结合神经网络算法的创新以及高带宽、高性能半导体设计的创新而飞速发展。
新思科技正在与世界各地细分市场中领先的AI 芯片供应商合作,提供采用经过验证的可靠IP解决方案,帮助他们降低芯片设计风险,加快产品上市速度,并为AI设计人员带来关键的差异化优势。
专用处理需求、创新内存架构和实时数据连接构成了人工智能芯片的DNA,面对AI设计挑战,新思科技提供了许多专业处理解决方案来消除存储器瓶颈,包括存储器接口IP、带有TCAM和多端口存储器的芯片SRAM编译器等,同时提供了全面的实时数据连接选项。这些IP解决方案是下一代AI设计的关键组件。
上一篇:瑞萨独家的DRP技术以低功耗实现了出色的实时图像处理
下一篇:Bridgetek推出人机介面开发模块
推荐阅读
史海拾趣
ABCO公司初创时,电子市场竞争激烈,众多企业争夺市场份额。面对这样的环境,ABCO公司创始人凭借对电子技术的深刻理解,以及敏锐的市场洞察力,选择了专注于某一细分领域——高精度传感器的研发与生产。通过不断优化产品设计,提升产品性能,ABCO公司的传感器逐渐在市场上获得认可,为公司的起步奠定了坚实基础。
C&K Switches公司一直致力于技术创新和研发。它不断投入资金和资源,研发出了一系列具有高性能和可靠性的开关产品。这些产品不仅提高了设备的运行效率和稳定性,还降低了故障率和维修成本。同时,C&K还积极与合作伙伴和客户进行技术交流和合作,共同推动电子行业的发展。这种技术突破和创新精神使得C&K在激烈的市场竞争中保持领先地位。
FEIG ELECTRONIC始终将技术创新作为企业发展的核心动力。公司不断投入大量资源进行技术研发和产品升级,以保持其在RFID领域的领先地位。近年来,FEIG推出了多款具有高性能、高可靠性、高安全性的RFID产品,如长距离读写器、智能门禁系统等。这些产品的推出不仅满足了客户的多样化需求,还进一步巩固了FEIG在RFID领域的市场地位。
以上五个故事大纲简要概述了FEIG ELECTRONIC在电子行业中的发展历程和关键事件。虽然每个故事的具体细节可能有所不同,但它们共同展示了FEIG在技术创新、市场拓展、合作创新、战略合作和持续创新方面的努力和成就。
随着国内市场的不断饱和,晨晶电子积极寻求海外市场的发展机遇。公司凭借优质的产品和服务,成功打开了国际市场的大门。通过与国外客户的深入合作,晨晶电子的产品逐渐走向世界,其品牌影响力也日益增强。同时,公司还积极参与国际电子行业的交流与合作,不断提升自身的国际竞争力。
近年来,AVX在汽车领域的应用也取得了显著进展。随着汽车行业的快速发展,对电子元件的需求也日益增长。AVX凭借其卓越的技术和品质,成功为汽车安全性、发动机控制、信息娱乐和底盘控制技术的开发提供了关键支持。AVX的产品广泛应用于各类汽车中,为提升汽车性能和安全性做出了积极贡献。
以上五个故事展示了AVX公司在电子行业中的发展历程和取得的成就。从创立初期到如今的全球化布局,AVX始终坚持以技术创新和市场拓展为核心,不断推动公司的发展。同时,AVX也积极关注可持续发展和绿色技术,为行业的进步做出了积极贡献。
在电子科技日新月异的今天,Fermionics Lasertech Inc公司由一群热衷于激光技术研究的科学家和工程师创立。他们致力于开发新型激光器,以满足电子制造行业对高精度加工的需求。在经历无数次实验和失败后,他们终于研发出了具有划时代意义的超精密激光切割设备,这一技术突破为公司赢得了第一笔大额订单,也为公司的后续发展奠定了坚实的基础。
#include <avr/pgmspace.h> #include "Port.h" // 数码管是共阳极 // SEG线硬件连接方法定义(某位为 \'1\' 表示与数码管相对应的引脚相连) #define SEG_A &nb ...… 查看全部问答∨ |
我看wince现实软键盘是调用的api:sipshowim();可这函数好像找不到源码。。。。。所以我还没找到修改软键盘位置的方法,希望知道的指导。。。谢谢… 查看全部问答∨ |
MCU控制GPRS模块(M23G)收发短信接打电话-开发总结 源码:[url=http://download.eeworld.net/source/2286092][/url] 这两天用MCU控制GPRS模块(M23G)收发短信接打电话碰到了一些问题,也走了一些弯路,总的看来用AT命令控制GPRS算是比较简单,不过要注意的是一些细节问题,如果没注意到这些问题将 ...… 查看全部问答∨ |
小弟是新手,在用vs2005 建立工程时c#下有WINCE 50 和POCKET2003两种选项,在VC++下又有一个智能设备选项,我想问一下他们有什么关系和区别. 另外那个我还想问一下在我的程序中访问数据库,不知PDA上可以用些什么数据库啊? … 查看全部问答∨ |
LED灯散热专用材料-软性硅胶导热片 散热是LED灯要重点解决的问题,而在这之前是一个导热过程更是一个关键。传统的散热模式中使用到导热材料是导热硅脂,导热硅脂在成本上会经济一些,但在需要大面积涂抹,存在很大问题,无法涂抹均匀。散热铜敷 ...… 查看全部问答∨ |
- 射频 FDA 如何使用射频采样 ADC 来增强测试系统
- 基于OPENCV的相机捕捉视频进行人脸检测--米尔NXP i.MX93开发板
- Nordic Semiconductor nRF54H20 超低功耗 SoC 荣获 2024 年世界电子成就奖 (WEAA)
- 英国测试装配神经系统的无人机:无需经常落地进行检查
- 超宽带的力量:重塑汽车、移动设备和工业物联网体验
- 意法半导体发布面向表计及资产跟踪应用的高适应易连接双无线IoT模块
- 今年我国物联网连接数有望突破 30 亿
- 英飞凌SECORA™ Pay Bio增强非接触式生物识别支付的便利性和可信度
- ADI公司如何让IO-LINK和工业以太网在智能工厂车间通信