历史上的今天

今天是:2024年11月12日(星期二)

2021年11月12日 | 如何利用示波器精确测量电源完整性?

发布者:沈阳阿荣 来源: eefocus关键字:示波器  精确测量  电源完整性 手机看文章 扫描二维码
随时随地手机看文章

在测试测量工作中我们会遇到这样的问题,电源轨电压(rail voltage)和容差越来越小,对电源完整性进行精确测量也变得越来越困难。过去,任何示波器都能够测量5V电源轨上10%容差的涟波(ripple),因为500mV要求远高于示波器的噪声位准(noise level);但现在,无论使用何种示波器都难以测量1V电源轨上2%容差的涟波电压。这种情况下我们该怎么测量呢,安泰告诉你一些小技巧让你利用示波器精确测量电源完整性。

图1:电源轨直流电压及其容差。

技巧1:调整显示特性波形强度(waveform intensity)

测量电源轨直流电压容差需要测出最坏情况下的电压峰-峰值(Vpp),这可透过自动化测量完美实现;有时目测判定也很有用,所有示波器均有显示设置,使用者可透过该设定改变波形强度。该强度值通常被设为约50%,将强度设为更高的值可让使用者更轻松地查看出现频率较低的波形对应的示波器像素。但增加波形强度的不利之处在于,这样更难以判断任何特定像素上显示波形的出现频率;虽然这对于观察调变信号很重要,但这种分辨率对于电源完整性测量通常并不重要。


无限持续时间(Infinite persistence):打开无限持续时间模式可让连续采集的波形累迭显示;无限持续时间对于建档也非常有用,示波器可显示较长时间内的直流电压容差范围。

色彩分级(Color grading):打开色彩分级模式可生成电源轨波形的3D图;色彩分级结合无限持续时间显示有助于更深入地认识电源轨信号。


技巧2:降低噪声选择低噪声示波器

如果信号强度小于示波器和探棒/缆线系统的噪声,你永远也测量不出该信号。信号在进入示波器后、进入模拟数字转换器(ADC)前,会迭加前端噪声;然后每个储存的样本除了包含原始的信号值,也会存在一些偏移量(offset),偏移量大小取决于获取样本时存在的噪声大小。使用者将在示波器的显示屏上看到较粗波形,不要将它与快速更新速率相混淆。大于真实信号的峰-峰值会显示并被测量到。


最好的方法是使用噪声更低的示波器。如何确定示波器的噪声水平?大多数示波器制造商都会提供产品规格表,列出该特定示波器的典型均方根(RMS)噪声值;这些噪声值是根据大量示波器样本所特征化。噪声是一种特征(characteristic)而非规格,制造商只会提供RMS噪声的典型值,但噪声的峰-峰值其实才是影响精确测量涟波的重要因素。

图2:噪声是导致电源轨直流涟波测量不准确的主要原因

一个简单的方法是自己测量。快速特征化仅需几分钟,且无需使用外部设备。断开示波器的所有输入,打开Vpp测量,设置噪声测量的垂直刻度和采样率,让示波器运行,直到获得稳定且一致的Vpp噪声值。噪声水平取决于垂直灵敏度设置、带宽设置和阻抗选择(50Ω或1MΩ),并且在同一示波器上的不同信道上会存在微小的差别。


选择噪声最低的信号路径阻抗:用于测量电源完整性的示波器通常具有两种信号路径阻抗:50Ω和1MΩ一般来说50Ω阻抗通常噪声更小,且支持示波器全带宽。1MΩ路径上的噪声可能是50Ω路径上的噪声的两到三倍,并且1MΩ路径上的带宽通常限制为500MHz,因此50Ω路径是测量电源完整性的最佳选择。电源轨的输出阻抗通常为mΩ等级。对于没有任何探棒的缆线测量设备来说,50Ω路径具有50Ω的直流输入阻抗,会产生一些负载效应,从而会减小电源轨直流幅度值。使用专用电源完整性探棒可以最大限度地减低该问题的影响。


使用最灵敏的垂直刻度:示波器噪声位准与示波器全屏幕垂直刻度值有关。因此,使用更灵敏的垂直分辨率将会减少测量的总噪声量。此外,当放大信号使其覆盖大部分垂直范围时,示波器将更充分利用ADC分辨率,这时Vpp的测量值将更准确。


限制带宽噪声具有宽带特性,在示波器未连接输入的情况下打开FFT功能,便可看到示波器的整个带宽上存在的噪声。打开带宽限制滤波器可以降低宽带噪声,有助于更精确地测量电源轨,但缺点在于如果带宽限制设定值太低,较高频率的异常就不会显示。应该使用多大带宽?答案是这取决于具体的信号。虽然切换速度可能在kHz范围内,但快速边缘会产生MHz范围的谐波。对于频率更高的耦合信号,包括频率谐波,则需要更大的带宽来撷取这些信号。


使用具有1:1衰减比的探棒可以显著提高测量电源完整性的精确度;具有较高衰减比的探棒会放大噪声,较高的衰减比则会限制可以使用的垂直灵敏度。例如在输入低至1 mV/div的示波器上使用衰减比为1:1的探棒就可以将灵敏度缩小至1mV/div,而使用衰减比为10:1的探棒只能设置至10 mV/div。


如何探测电源轨信号与其他技巧一样重要。有些使用者将电源轨链接至信号质量高、便于连接的SMA连接器;有些使用者是选择焊接连结,也有使用者选择在旁路电容使用夹具作为简易的接点;还有人是使用手持式探棒。每种技巧在易用性、所需的前期规划和信号质量方面都各有利弊。

图3:对于小信号,使用衰减比为 1:1 的探棒可以获得更精确的测量结果


技巧3:达到足够的偏移量交流耦合和阻隔电容

示波器内建的偏移量通常不足以让使用者将波形放置在显示器中央并放大显示,这会导致两个负面因素:示波器只使用一小部分ADC垂直分辨率并使用更大的垂直刻度,从而产生额外的噪声;这会降低测量品质。


如果在选定的路径和探棒上使用阻隔电容或示波器的交流耦合模式,将去除信号中的直流分量;这可以解决部分问题,但会无法看到实际的DC值和漂移。


内建偏移的探棒一些探棒具有额外的内建偏移,其优势在于可让使用者获得足够的偏移量,从而能看到真实的DC值和低频特性,诸如漂移和骤降(sag)。


技巧4:评估开关与EMI频域图

特征化电源轨通常需要确保电源轨上没有耦合干扰信号,此外大家有时需要考虑开关谐波。查看时域波形无法确定这些干扰因素,但透过示波器的FFT功能可以在频域看到这些干扰。


查看频域波形需要多大的带宽?这取决于电源轨上可能耦合的潜在信号,包括频率信号和快速边缘谐波。

图4:查看电源轨在时域中的波形图可以得到Vpp

但要找出并隔离电源轨上的耦合信号(例如本例中的2.4 GHz Wi-Fi信号),则需要使用频域图。


技巧5:加快测量速度更新速率对电源完整性测量速度的影响

电源轨测量需要找出最坏情况下的电压值,建立高可靠度意味着在更长时间内进行数百或数千次测量;这会耗费很长的时间,而且过程也会很枯燥。电源完整性测量的独特之处在于它们通常需要很长的时间跨度,为了保持更高的带宽,示波器需要更高的采样率,从而将占用大量的内存。


波形更新速率用于描述示波器处理内存、在显示器上显示结果并开始撷取新数据的速度;数字示波器的更新速率高达100万个波形/秒。快速的更新速率则意味着可以更快地完成Vpp和FFT等测量。许多示波器的最大更新速率在每秒数十次或数百次采样的范围内,这意味着这种示波器要准确获得最坏情况下的容差测试,所需时间比更新速率高的示波器要高出几个等级。更新速率高的示波器能让使用者更快速地完成精确测量。


说了这么多安泰来给大家总结一下:

1、选择低噪声示波器对于精确测量电源完整性至关重要;

2、示波器搭配衰减比 1:1 、内建偏移、高带宽、高直流阻以及整合电压计的探棒使用,可提升测量性能;

3、了解并正确设定一系列示波器属性,例如垂直刻度和带宽限制滤波器,可提高测量结果的精确度;

4、添加频域图可让用户快速隔离耦合信号;

5、快速更新速率能让用户更快速地测试电源轨

关键字:示波器  精确测量  电源完整性 引用地址:如何利用示波器精确测量电源完整性?

上一篇:示波器带宽这个指标为什么这么重要
下一篇:泰克示波器解密电源纹波测试误区

推荐阅读

在近日举行的2018首届世界声博会上,除了探讨人工智能技术和产品,一个非常新鲜的话题——“AI科学观”也被正式列入大会议程。作为一门新兴技术,人工智能的健康发展离不开社会的理性认识。而目前很多人对它的态度和看法还不够科学。比如,有人神化人工智能,认为它已强大无比;有人担忧人工智能将威胁人类,进而抵触它;还有人认为目前的人工智能并非真正...
据外媒报道,美国能源部橡树岭国家实验室(Oak Ridge National Laboratory,ORNL)的研究人们设计并测试了新型无线充电方案,此种方案可将功率密度增加一倍,导致新系统比现有技术更轻,同时也确保了安全性。(图片来源:美国能源部橡树岭国家实验室)此种免提充电法包括一组两个充电线圈,一个固定在电动汽车下方,一个固定在地面上。当两个充电线圈匹...
Seeed供应Grove模块产品已经有一段时间了,包括传感器、显示器、LED、按钮和更多周边设备。现在,Seeed发布了一个Grove初学者套件,这使得入门更容易。Grove初学者工具包由一个单独的PCB组成,配备有Arduino兼容的Seeduino Lotus,带有相应的插头和附加连接器,专门用于将Grove电缆连接到Grove模块上。该套件的独特之处在于,包括的所有模块都已经通过PCB...
万用表分数字式和指针式。下面分别介绍一下判断是否正常的方法。对于指针式万用表可拿在手里轻轻摇晃一下,如果指针异常灵活摆个不停,即可判定表是坏的。因为表头的分流电阻能让表针产生阻尼作用很快静止。否则就是电阻开路或动圈断线。对于直流电压档可找一个电池或直流电源,把表拨到略高于它的档位(比如用5V档测1.5或3V电池)进行测量。交流电压档则...

史海拾趣

问答坊 | AI 解惑

推荐一款自制多用途遥控器

此多用途遥控器,可以根据不同的需要,用于家中的各种家用电器如电风扇、多用照明灯、遥控窗帘等。电原理图如图1。 本遥控器采用新力电子仪表有限公司生产的微型化无线遥控四位专用组件,它包括一个四位扣式发射机,其电源采用A23型12V ...…

查看全部问答∨

请教!!!使用Driverstudio,Defaultpnp的问题

使用DRIVERMONITOR显示 IRP: Major=IRP_MJ_PNP Minor=<unknown minor function> (0x18) defaultPnp--.  IRP 856C8790, STATUS c00000bb 调用m_lower.ActivateConfiguration配置时,返回AC_FAILED_TO_OPEN_PIPE_OBJECT, 是我端点 ...…

查看全部问答∨

添加了mainMenu控件和inputPanel控件,但是控件不显示

我在Textbox的GotFocus事件事添加了 inputpanel1.Enabled=true; 但是在mainMenu控件上看不到图标,也没有办法切换输入法…

查看全部问答∨

lineMakeCall 失败 错误号为 LINEERR_INVALBEARERMODE 的原因

我的调用顺序为: lineOpen --------------Success lineTranslateAddress     -----success 设置为: lpCallParams->dwTotalSize      = dwSizeOfCallParams;         lpCallPar ...…

查看全部问答∨

如何在PDA上开发蓝牙程序

如何在PDA上开发蓝牙程序与蓝牙串口芯片控制单片机进行串口通信(非微软协议栈)…

查看全部问答∨

PlatformBuilder编译错误。。。

ERROR: Res2Exe: WriteResFile: Open input file D:\\WINCE500\\PBWorkspaces\\GDI1029\\RelDir\\Emulator_x86_Release\\shlwapi.dll failed. ERROR: Res2Exe: WriteResFile: Open input file D:\\WINCE500\\PBWorkspaces\\GDI1029\\RelDir\\Emula ...…

查看全部问答∨

一个有关cxa1238的图,高手请指点一下

本帖最后由 paulhyde 于 2014-9-15 09:39 编辑 各位高手帮忙指点一下,按照下图中的cxa1238芯片的22脚接的本振,可是怎么调频率总是680k左右,我的载频是35M,所以本振应该是在45M左右,可是怎么调可调电容,它频率总不变啊!!!!找也没找出原因 ...…

查看全部问答∨

关于ads1115学习心得体会

研究ADS1115一段时间了,终于搞定啦,其实操作还是蛮简单的,主要分为三部分的步骤,本次列子是模拟IIC操作的哦。。。。。 其实主要分为三部分, 第一部分:write config register 1   0x90   最后一位是R/W位,高为读,低 ...…

查看全部问答∨

关于《科学鬼才:电子电路设计64讲》资源涉嫌侵权的处理

前一段小版在论坛下载中心上传了一份资源《科学鬼才:电子电路设计64讲》(帖子链接https://bbs.eeworld.com.cn/thread-418842-1-1.html)。今天接人民邮电出版社通知,说该资源涉嫌侵权。为避免不必要的纷争,论坛决定将该资源删除。由此给大家带来 ...…

查看全部问答∨

利用msp430g2253实现串口通信,利用串口调制助手测试

程序是这样的,但是串口调试助手无法接收到数据我理想的效果是向430发送hello,430回复hello world #include <msp430g2553.h> void main(void) {         WDTCTL=WDTPW+WDTHOLD;  // Stop WDT     ...…

查看全部问答∨
小广播
最新测试测量文章
更多往期活动

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved