增强型人工智能为Meteor Lake处理器的设计提速,并将在未来的客户端处理器家族中得到应用。
Olena Zhu博士,英特尔客户端计算事业部高级首席工程师及人工智能解决方案架构师 (来源:英特尔公司)
数十年来,我们需要将科学与艺术相结合,以决定将热敏传感器置于英特尔客户端处理器的何处。
电路设计师会参考历史数据,来确定将热感应器放置在现代笔记本电脑的中央处理器(CPU)的哪个位置。他们还会依靠经验判断热点容易出现的区域。这个复杂的流程可能需要耗费6周时间进行测试,包括模拟工作负载,优化传感器位置,然后重新开始整个步骤。
如今,得益于英特尔工程师内部研发的一种新的增强智能工具,系统级芯片的设计师无需再等6周才能知道他们是否找到了传感器的最佳位置,他们在几分钟内就可以得到答案。
增强型智能的一小步,芯片设计的一大步
这款工具由英特尔客户端计算事业部高级首席工程师及人工智能解决方案架构师Olena Zhu博士带领增强智能团队开发。这款工具帮助英特尔的系统架构师们将数千个变量纳入未来的芯片设计中。这只是众多例子之一,其中英特尔团队利用人工智能知识来优化各种工作负载。
增强型智能是人工智能的一个子集,关注的是人类和机器如何协同工作。
英特尔客户端计算事业部首席工程师兼高级系统热力学及机械架构师 Mark Gallina说道:“像笔记本电脑这样的客户端产品非常依赖睿频和峰值频率。大家希望SoC能够突破至更高的频率,而这反过来会生成热量。”
他详细解释了工程师们必须如何精确地分析激活CPU核心、输入/输出(I/O)以及其他系统功能的复杂、并发的工作负载,以精准地确定热点的位置。使得这个过程变得更加复杂的是确定在何处放置微小的热传感器,每一个都只比你用的普通图钉尖稍大一点。
Gallina说:“这个过程需要几个星期,而且我们一次只能研究一到两个工作负载。”
英特尔新型增强智能工具解决了这些需要靠推测进行的工作。工程师输入他们的边界条件,这个工具可以处理数千个变量,几分钟内就能返回理想的设计建议。
工程师们已在英特尔® 酷睿™ Ultra移动处理器系列(Meteor Lake)SoC设计中应用该工具。Meteor Lake于2023年12月14日正式发布。同时,这款工具也将会在未来客户端产品如Lunar Lake及其后继产品中得到应用,这有助于进一步扩展AI PC等级的笔记本产品线。
英特尔增强智能团队成员,左起:Mark Gallina,Olena Zhu 和 Michael Frederick,位于俄勒冈州希尔斯伯勒的英特尔客户端计算事业部实验室。
更多AI:利用增强AI识别热工作负载以优化芯片设计
Olena Zhu和其团队成员首席工程师和AI 解决方案架构师Ivy Zhu还开发了一个能快速识别关键热工作负荷的配套工具。
Olena解释说,其工作原理是这样的:她的团队基于少数工作负载的模拟或测量结果,训练AI模型。然后,这些AI模型能够预测英特尔尚未进行模拟或测量的其他工作负载。
这两款增强智能工具,共同提升了工程师们优化未来英特尔处理器系列的芯片设计能力,包括用于驱动下一代AI PC的客户端处理器。
尽管这两个工具都非常有用并且不会出现任何错误,但是增强智能在短期内并不会取代真正的工程师。
Gallina表示:“通过增强智能,我们结合计算机学习和人体工程学专业知识,以确保将我们有限的资源投入到最佳领域。”
“这款新工具彻底革新了我们目前处理热量的方式。它更为高效,并且在我们启动SoC之前,能让我们对热风险有清晰的认识。我们以前一直在黑暗中摸索,但现在,有了增强智能,就好比我们得到了一盏手电筒,照亮了前进的道路。”
增强型智能助力类似“大海捞针”的精准工作
几年前,Olena惊喜地意识到人工智能投资的飞速进展为英特尔的设计工作打开了新的大门。
Olena表示:“运用增强型智能带来的一种新的工具类型,我们能够比以往更有效地处理数据。当我们将人工智能与现有的卓越工程实力相结合时,可以更有效地在海量数据中准确定位和快速处理。”
得益于Olena及团队的努力,英特尔的工程师们均在致力于发展人工智能。英特尔客户端计算事业部的增强智能团队继续寻找人工智能加快硬件和软件设计的方法,并获得了以下进展:
对于高速I/O的快速准确信号完整性分析工具,其设计时长从几个月缩短至1个小时。英特尔是业界首个采用此项技术的公司,该技术已经为多代芯片的设计提供支持。
基于人工智能的自动故障分析工具用于高速I/O设计,自2020年部署以来,设计效率提升了60%。
名为“AI Assist”的增强型智能工具能够使用AI模型自动确定不同平台的定制超频值,将超频所需的准备时间从几天减少到一分钟。现在,搭载酷睿第14代处理器的产品会提供“AI Assist”工具。(视频: AI Assist 如何通过机器学习让超频更容易)
基于人工智能的自动化硅片版图设计优化器被纳入英特尔的SoC设计流程。
一种智能采样工具可以帮助动力和性能工程师处理智能设计实验,将测试用例的数量减少了40%。
一种用户交互工具构建的人工智能模型,以预测架构方案的性能并帮助解决CPU设计的平衡问题。
一种自动放置微型电路板组件的新方式将循环时间从几天缩短至几个小时。
英特尔的其他工程团队也在英特尔丰富的产品组合中巧妙使用AI:英特尔® 硬件线程调度器算法正式在第13代英特尔® 酷睿™ 处理器CPU中亮相,使工作负载提高了20%以上。
另一个例子,工程团队利用内部开发的智能AI算法,成功将单个处理器的测试时间减少了50%。
Olena说道:“产业中将AI融入类似的工程应用的趋势愈演愈烈,而英特尔无疑会欣然接受并充分利用这一趋势。”
上一篇:Microchip收购Neuronix AI Labs
下一篇:东芝拟在日本裁员 5000 人,将集中资源发展数字化
推荐阅读最新更新时间:2024-11-02 11:03
- 英飞凌2024财年第四季度营收和利润均有增长; 2025财年市场疲软,预期有所降低
- 光刻胶巨头 JSR 韩国 EUV 用 MOR 光刻胶生产基地开建,预计 2026 年投产
- Imagination DXS GPU 已获得ASIL-B官方认证
- arm召开2025二季度财报会,V9架构继续大获成功
- 新思科技携手ZAP亮相2024进博会:助力全球首创无屏蔽放疗手术机器人实现
- 铠侠将开发新型 CXL 接口存储器:功耗、位密度优于 DRAM、读取快于 NAND
- 全新纳米级3D晶体管面世
- 郭明錤剖析英特尔Lunar Lake失败原因:制程落后,更在于产品规划能力
- Silicon Labs:技术创新驱动稳健增长,物联网市场前景广阔
- LT6658BHMSE-2.5 的典型应用电路驱动两个代码相关的 DAC 基准输入,单独的 DAC 基准偏置消除了代码相关的基准电流相互作用
- LTM4641 演示板、38V、10A、具有高级输入和负载保护的降压模块稳压器
- 呆呆遥控器
- 使用 Analog Devices 的 LT1764ET-3.3 的参考设计
- 使用 Analog Devices 的 AD9549A 的参考设计
- 3.3V环境下USB收发器上行连接
- AM1S-2405SZ 1W DC-DC转换器典型应用
- Ctrl_Mini
- LT3663EMS8E、具有隔离式 3.3V 输出的 5V 降压型稳压器的典型应用
- 用于紧凑型荧光灯的 1 灯 26W 荧光灯驱动器