作为半导体材料具有优异的性能,尤其是用于功率转换和控制的功率元器件。但SiC在天然环境下非常罕见,最早是人们在太阳系刚诞生的46亿年前的陨石中发现了少量这种物质,因此其又被称为“经历46亿年时光之旅的半导体材料”。
Yole在近日发布的《功率碳化硅(SiC):材料、器件及应用-2019版》报告中预计,到2024年,碳化硅功率半导体市场规模将增长至20亿美元,2018-2024年期间的复合年增长率将高达29%。其中,汽车市场无疑是最重要的驱动因素,其碳化硅功率半导体市场份额到2024年预计将达到50%。
晶圆短缺还会持续吗?
过去的两三年里,晶圆供应短缺一直是制约SiC产业发展的重大瓶颈之一。面对不断增长的市场需求,包括晶圆厂在内的众多重量级玩家已经意识到必须扩大投资,以支持供应链建设。
科锐(Cree)公司在今年5月宣布将投资10亿美元建造一座200mm SiC碳化硅生产工厂和一座材料超级工厂,从而确保Wolfspeed SiC和GaN-on-SiC(碳化硅基氮化镓)产能在2024年实现30倍的增长,以满足EV电动汽车和5G市场需求。
意法半导体(ST)2018年SiC收入约为1亿美元,其2019年的目标收入为2亿美元,2025年目标收入定为10亿美元并希望由此占据30%的SiC市场份额。为此,ST在今年1月与Cree签署了碳化硅晶圆多年供货协议,根据协议,Cree将向ST供应价值2.5亿美元的150mm碳化硅裸晶圆和外延晶圆。一个月后,ST又宣布收购瑞典SiC晶圆供应商Norstel AB 55%的股份,并享有在满足某些条件下收购剩余45%股本的期权,如果行使期权,最终收购总价为1.375亿美元。
同为SiC生产大厂的英飞凌(Infineon)自然也不甘落于人后。除了早在2018年2月就宣布与Cree达成SiC晶圆长期供货战略协议外,还于同年11月收购了初创企业Siltectra,并借此获得了一种名为“冷切割(Cold Spilt)”的高效晶体材料加工工艺。英飞凌计划将这项技术用于SiC晶圆的切割,并在未来五年内实现该技术的工业化规模使用,从而让单片晶圆可出产的芯片数量翻番。据了解,截止至2018年,英飞凌SiC在充电桩市场的市占率超过五成。
以罗姆(ROHM)为代表的日系厂商则是SiC市场的另一支重要力量。该公司从2000年就开始进行SiC MOSFET的基础研究,并在2009年收购德国SiC晶圆材料厂商SiCrystal,从而拥有了从晶棒生产、晶圆工艺到封装组装的完全垂直整合的制造工艺。其里程碑事件包括2010年全球首发SiC SBD(肖特基二极管)/MOS并实现量产、2012年全SiC模块量产、2015年沟槽型SiC MOS量产以及2017年6英寸SiC SBD量产。
罗姆公司6英寸SiC MOSFET晶圆
市场调研机构Yole Development的数据显示,2013年罗姆在全球SiC市场的份额为12%,而富士经济的数据则表明,2018年罗姆的市场份额已增长至23%。罗姆半导体(北京)有限公司技术中心所长水原德健表示,从2017年到2025年,罗姆将阶段性投资共计850亿日元用于SiC生产。作为该项投资的一部分,罗姆在时隔12年之后再次在日本国内修建了一座占地面积20000m2的Apollo新工厂,主要为SiC器件提供晶圆,已于2019年4月动工,预计2021年投入使用。届时,其SiC产能将是2017年的6倍,到2025年将达到16倍。
但安森美半导体(OnSemi)低压及电池保护MOSFET和宽禁带高级总监兼总经理Bret Zahn对“晶圆供应短缺制约了SiC市场发展”的说法持保留意见。
“我认为平台导入设计的严格流程和随后的认证一直是门槛,市场采用反而是在持续增加。”他分析称,SiC市场此前主要使用100mm晶圆,直到最近2-3年,更多的SiC器件供应商开始进入市场,带来了更激烈的市场竞争,由于具备成本优势,150mm晶圆开始受到青睐。不过,150mm晶圆成品率不能与100mm晶圆成品率相当,所以供应商一直在努力提高更大直径晶体的质量,这导致了高成品率150mm SiC晶圆的短缺。但随着100mm晶圆供应商现在开始提供同等或更好裸片质量的150mm晶圆,以及不断有新的晶圆供应商加入市场,SiC晶圆短缺现象已经开始得到缓解。
安森美于2017年进入SiC器件供应商市场,技术来自2016年末收购的飞兆(Fairchild)半导体。作为一家相对较新的SiC器件供应商,安森美从一开始就使用150mm晶圆生产,其核心策略是认证多个供应商,再重点收购那些能够提供最高裸片成品率晶体的供应商,以确保SiC晶圆供应。同时,安森美还制定了内部SiC晶体成长计划,目标是在2022年底提供至少50%的自有SiC晶圆,这种全面的SiC垂直整合对于保证供应(尤其是汽车客户)和提供最低成本的SiC制造基础设施极为关键。
汽车,重塑SiC市场的关键
SiC最初的应用场景主要集中在光伏储能逆变器、数据中心服务器UPS电源和智能电网充电站等需要转换效率较高的领域。以一款5KW LLC DC/DC转换器为例,其电源控制板在采用Si IGBT(硅绝缘栅双极型晶体管)时,重量7kg,体积8,775cc;而当采用SiC MOSFET之后,重量锐减至0.9kg,体积减小到1,350cc。这得益于SiC MOSFET的芯片面积仅为Si-IGBT的1/4,并且其高频特性使损耗相比Si-IGBT下降了63%。
但人们很快发现,碳化硅的电气(更低阻抗/更高频率)、机械(更小尺寸)和热性质(更高温度的运行)也非常适合制造很多大功率汽车电子器件,例如车载充电器、降压转换器和主驱逆变器。尤其是特斯拉(Tesla)在其Model 3主驱逆变器中采用了SiC器件之后,示范效应被迅速放大,使xEV汽车市场很快成为SiC市场兴奋的源泉。
著名的电动方程式赛车(Formula-E)中也用到了SiC技术。从2016年第三赛季开始,罗姆开始赞助Venturi车队,并在赛车中使用IGBT+SiC SBD组合取代传统200kW逆变器中的IGBT+Si FRD方案,相比之下,使用SiC方案后,逆变器在保持功率不变的前提下,重量降低2kg,尺寸减小19%。而当2017年第四赛季采用SiC MOS+SiC SBD后,不但重量降低了6kg,尺寸减小43%,逆变器功率也由此前的200KW上升至220kW。
目前,xEV汽车中的主驱逆变器仍以IGBT+Si FRD方案为主,但考虑到未来电动汽车需要更长的行驶里程,更短的充电时间和更高的电池容量,采用SiC MOS器件将是大势所趋,时间节点大约在2021年左右。此外,车用OBC和DCDC应用,也已经先后在2017/2018年迎来重大革新,分别由SiC SBD转向SiC SBD+SiC MOS和从Si MOS演变为SiC MOS。同时,采用SiC SBD+SiC MOS方案的无线充电和采用SiC MOS方案的大功率DCDC正在研发中。
SiC在汽车应用中的趋势
“将SiC逆变器用于电动汽车所带来的经济收益是显而易见的。”水原德健说,通过SiC可以提高3%-5%的逆变器效率,降低电池成本/容量,并且SiC MOS有很大机会被率先引入高档车中,因为其电池容量更大。
但Bret Zahn提醒业界说,在开发SiC时,晶圆制造、封装/测试、应用测试和最终合格检验等开发链中的一切都必须重新考虑。例如,被认为在xEV市场最具吸引力的大裸片低导通电阻Rdson器件已被认定是个巨大的挑战。由于SiC不同的属性和小得多的裸片尺寸,业界需要再次重新考虑许多热机械应力问题,也需重新设计互连技术,以获得更高的电流密度和更低的电感。此外,在xEV市场,为了充分利用SiC所有的优势,还必须强化伙伴关系,加强客户沟通,以创建高度定制的系统方案。
分立器件 VS 功率模组
和IGBT一样,对于SiC,业界也普遍希望模块扮演关键角色。但是全SiC模块将采用什么形式?尽管一些制造商采用了标准硅封装,但大多数制造商已经开发出自己的SiC模块,例如特斯拉通过与ST、Boschman合作开发,已经成功打造了具有自主知识产权的SiC模块设计供应链,相关器件由意法半导体完成制造。
Bret Zahn说光伏和xEV市场在SiC使用方面的发展路径很有趣。过去两年,光伏市场经历了IGBT/SiC混合升压模块的加速推出,并在2019年开始迈向全SiC模块。也就是说,光伏市场选择的是一条从IGBT到混合IGBT/SiC,再到全SiC的路径。
但xEV市场有些不同,它们绕过了混合方案,直接向全SiC模块发展。这里有两个原因:第一,相比IGBT/SiC混合方案,xEV供应商发现使用全SiC模块逆变器能够以更低的系统成本为xEV市场提供更好的性能;第二,竞争因素也在起作用,许多xEV供应商在看到同行采用全SiC系统方案后获得了更好的行驶里程后,意识到他们也必须这样做,否则就会被市场迅速淘汰。
降低价格的最快方法
SiC领域的专业人士对SiC器件往往是 “又爱又恨”。一方面,SiC器件具有高压、高频和高效率的优势,在缩小体积的同时提高了效率,给市场带来的机遇也远远大于挑战。但另一方面,SiC在制造和应用方面又面临很高的技术要求,如何降低使用门槛成为业界热议的话题。
ST总裁兼首席技术官Jean-Marc Chery认为业界需要在短期内应对两个关键挑战:一个是供应链,另一个是成本。原材料供应商和设备供应商需要在数量上调整供应链,并采取相关措施来推动、证明在电动汽车等领域采用SiC是节能的。同时,与硅相比,尽管碳化硅在击穿场强、禁带宽度、电子饱和速度、熔点以及热导率方面都更具优势,但坚硬的材质和复杂的制造工艺流程大幅提高了成本,相关企业必须要在缩小器件、增加晶圆尺寸、降低材料成本、优化模块设计等方面下功夫。
但即便如此,“单个SiC器件的成本还是会高于传统Si器件”。不过,Chery说ST强调的是系统成本的最终节省。例如,在电动汽车中,SiC器件可能会额外增加300美元的前期成本,但总体而言,由于电池成本、电动汽车空间和冷却成本的降低,却节省了2000美元的系统成本。
Bret Zahn对此持同样的观点,原因也基本类似,主要源于SiC能够提供更高的能效,延长电池使用寿命,减少热量,并且有助于减少汽车电源管理系统的尺寸和重量,从而带来更远的行驶里程。虽然目前在器件级SiC价格仍然比Si IGBT贵,但是这些优点节省了系统级成本,这对xEV市场极具吸引力。
安森美方面认定垂直整合是实现SiC与IGBT成本平价(cost parity)的最快方法。除了垂直整合从晶棒生长到成品(包括裸片、分立器件和模块)用于工业和汽车市场外,构建包括驱动器、全系列分立二极管和MOSFET、定制和插入即用的模块方案、先进的SPICE模型和世界一流应用工程团队在内的SiC生态系统亦非常关键,这能够帮助用户加速定制设计和上市时间。
在英飞凌工业功率控制事业部总监马国伟博士看来,SiC的价格问题一直很严峻,客户永远希望价格越低越好。但作为一个新兴技术,SiC自然也有新兴技术所存在的普遍问题:产量小、稳定度不够、价格高。虽然大家都希望SiC技术可以普及,但是从新兴技术发展到通用技术这个过程往往是十分漫长的。
“IGBT从1990年发展至今,30年间经历了7代技术革新,晶圆尺寸从4英寸增加到12英寸,芯片厚度从300μm降低到60μm,最终成本降到了原先的五分之一。所以SiC技术也同样需要时间来进行技术上的打磨,从而降低成本。”马国伟说。
下图是罗姆给出的功率半导体器件使用场景总结。如果以开关频率作为横坐标,输出功率或电压作为纵坐标,那么SiC-MOSFET的应用主要集中在相对高频高压的区域,Si-IGBT/Si-MOSFET/GaN HEMT则分别对应高压低频、高频低压和超高频低压应用。
功率半导体器件使用场景总结
因此,尽管非常看好碳化硅,但ST方面还是强调说,碳化硅并不会完全取代硅基IGBT或MOSFET,这些技术产品在开关特性、功耗和成本方面各不相同,每一种都有自己非常适合应用领域。英飞凌大中华区副总裁于代辉则认为SiC能在某个行业对其效率有革命性的提升,比如提高能效、减少重量与体积。但SiC器件也不是万金油,在接下来的很长一段时间内,Si与SiC器件都会长期并存并共同发展。
上一篇:面向车载 高温稳定——罗姆发布200V肖特基势垒二极管新品
下一篇:技术文章—PI利用氮化镓技术为LED照明增添新花样
推荐阅读
史海拾趣
20世纪70年代,ERNI开始实施全球化战略。他们意识到,只有不断扩大市场份额,才能确保公司的长期稳定发展。因此,ERNI开始在欧洲、北美和亚洲等地设立销售处和生产基地,为全球客户提供创新且高品质的产品。这一战略的实施,不仅使ERNI的销售额大幅增长,还进一步巩固了其在全球连接器市场的领先地位。
作为一家在电子行业具有影响力的企业,Emulation始终关注社会责任和可持续发展。公司积极参与各种公益活动,为当地社区的发展做出了贡献。同时,Emulation还注重环保和节能,致力于推动绿色电子产品的设计和生产。这些举措不仅提升了公司的社会形象,还为公司的长期发展奠定了坚实的基础。
在20世纪中期,GI作为一家新兴的电子设备制造商,以其对新兴技术的敏锐洞察力和创新精神而崭露头角。公司创始人意识到半导体技术的巨大潜力,决定投入大量资源进行研发。通过不懈努力,GI成功推出了多款基于半导体技术的创新产品,如早期的晶体管收音机和电视机,这些产品不仅在当时市场上引起了轰动,也为公司后续的快速发展奠定了坚实基础。这一阶段的成功,标志着GI在电子行业技术创新的道路上迈出了坚实的一步。
随着第二次世界大战的爆发,全球对国防电子产品的需求激增。GI凭借其在电子技术领域的深厚积累,迅速调整战略方向,积极投身于国防电子产品的研发与生产。公司开发的潜水艇探测设备和其他关键国防电子产品在战争中发挥了重要作用,赢得了军方的高度认可。这一阶段的成功不仅为GI带来了丰厚的利润,也极大地提升了公司在电子行业中的知名度和地位。
摘要:对微波单片集成(简称MMIC)双栅MESFET混频器的设计理论和工艺技术进行较为细致的研究。根据双栅MESFET的理论分析与实验结果,建立了一种栅压调制I-V特性的经验模型,推导了双栅FET混频器变频增益公式。分析了栅压对改变非线性跨导在混频器中的作 ...… 查看全部问答∨ |
|
现在想把原来在WINCE5.0开发的MFC程序移植到WINCE6.0上面, 但一直不能成功.特来请教下: 我现在的环境是VS2005+WINCE6.0 之前在网上找了下, 说是WINCE6.0默认是不支持MFC的.要手动添加几个DLL文件. 现在我也把 MFC80ENU.DLL加进去了, ...… 查看全部问答∨ |
|
我使用的是vs2005 DriverStudio3.2 XPDDK编译DriverStudio库文件时出现这样的问题如下: C:\\PROGRA~1\\COMPUW~1\\DRIVER~1\\DRIVER~4\\source>call C:\\WINDDK\\2600\\bin\\setenv.bat C:\\WINDDK\\2600 chk C:\\PROGRA~1\\COMPUW ...… 查看全部问答∨ |
;-------------------1543对应的管脚接线方式----------------------- ;1543<<------>>AT89C52 ;EOC<<------->>P1.5 ;I/O CLOCK<<->>P1.6 ;ADDRESS<<--->>P1.7 ;D ...… 查看全部问答∨ |
case "$board_name" in assabet) board_name="Intel Assabet" AC_DEFINE(ASSABET) &nb ...… 查看全部问答∨ |
想做个基于蓝牙应用的嵌入式项目,想法是 开发板+单独蓝牙模块,操作系统用linux,因为对硬件不熟悉,不知道选择那个平台的什么型号的开发板,恳请赐教,谢谢~~~… 查看全部问答∨ |
LM3s8962体验之二----------- Keil µVision 4 目标工具选项详解 一、目标工具选项(Target Options …) µVision可以设置目标硬件的选项。通过下图1中的工具栏2区域按钮或1区域菜单项Project -> Options for Target打开Options for Target对话框。 & ...… 查看全部问答∨ |
- 英飞凌2024财年第四季度营收和利润均有增长; 2025财年市场疲软,预期有所降低
- 光刻胶巨头 JSR 韩国 EUV 用 MOR 光刻胶生产基地开建,预计 2026 年投产
- Imagination DXS GPU 已获得ASIL-B官方认证
- arm召开2025二季度财报会,V9架构继续大获成功
- 新思科技携手ZAP亮相2024进博会:助力全球首创无屏蔽放疗手术机器人实现
- 铠侠将开发新型 CXL 接口存储器:功耗、位密度优于 DRAM、读取快于 NAND
- 全新纳米级3D晶体管面世
- 郭明錤剖析英特尔Lunar Lake失败原因:制程落后,更在于产品规划能力
- Silicon Labs:技术创新驱动稳健增长,物联网市场前景广阔