基于STM32F407单片机开发了一种定心支片顺性测量系统

发布者:Serendipity99最新更新时间:2024-06-17 来源: elecfans关键字:STM32F407  单片机 手机看文章 扫描二维码
随时随地手机看文章

摘要:

针对传统的扬声器定心支片顺性测量仪线性范围判断不准确以及无法进行动态测量的问题,设计了一种定心支片顺性测量系统。该系统以STM32F407单片机为核心,硬件部分通过运动控制电路和数据采集电路实现了自动测量的功能,并使用低电压纹波的线性直流稳压电源使得采样结果更加准确。软件部分通过滑动均值滤波算法来减小输出误差,并采用了最小二乘法来提高拟合优度,最后通过线性逼近法来获得定心支片的线性范围。实验结果表明,该系统具有较高的分辨率,能准确获得定心支片的顺性曲线和线性范围。


0 引言

定心支片是扬声器的核心部件之一,它用于保证扬声器工作时,音圈在磁隙中处于正确的位置,并且保证音圈在振动过程中仅沿轴向作往复运动[1-2]。受到制作材料和设计形状的影响,在扬声器工作时,定心支片会产生一定程度的非线性失真。因此,要求在有效的振动范围内,定心支片的受力和形变需要有良好的线性关系。 扬声器行业中用定心支片的顺性来表征一个定心支片的特性,即定心支片弹性系数的倒数。较为普遍的测量方法是施加固定负载(50 g或者100 g标准砝码)后根据定心支片的变位来判断定心支片的顺性[3-4]。传统的定心支片顺性测量仪通常基于这一方法来实现,但是使用过程中,只能粗略地判断一个定心支片的线性范围,不能反映定心支片运动过程中的受力情况,且不能测量定心支片的最大线性范围,对于后续的研究与分析具有很大的局限性。 针对以上问题,本文结合前人的工作,基于STM32F407单片机开发了一种定心支片顺性测量系统。该系统结合步进电机、数显游标卡尺和压力传感器,实现了自动控制定心运动并检测位移和受力大小的功能,并使用滑动均值滤波算法和最小二乘拟合算法对数据进行处理,使得测量结果更加精确。最后通过对顺性曲线进行计算来查找被测定心支片的线性范围。

1 硬件设计

1.1 系统结构设计

定心支片在持续受到一个方向的外力作用时会产生一定的塑性形变而无法自动复原,而在扬声器工作中,定心支片的受力的大小与方向实际上是一个持续变化的过程,因而需要动态地对其进行测量,才能准确反映其运动时的真实受力情况。基于以上分析,本系统使用步进电机和线性滑轨对测量系统进行搭建,既可以模拟定心支片运动的过程,又可以通过单片机对运动状态进行控制,来模拟不同的工作场景。另外,在运动过程中通过单片机对各模块进行数据采集和计算,即可得到扬声器工作时定心支片的运动参数。 系统的结构示意图如图1所示,使用精度为0.01 mm的数显游标卡尺与滑轨连接,用于采集定心支片的位移数据。压力传感器固定于滑轨之上,用于采集压力数据。另外,使用高精度的滚珠丝杆作为步进电机和滑轨的联动轴使得系统运行更加精确。

1.2 电路设计

本系统的硬件电路的设计从性能、功耗、稳定性与可靠性这几个方面来综合考虑,并按照实现的功能对电路模块进行了分类,使用模块化的设计方法降低了电路系统设计的风险,并且易于修改和测试。电路整体设计框图如图2所示,电路系统以STM32F407单片机作为主控芯片,对各类模块进行控制。其中数据采样模块使用了低纹波的线性直流稳压电源,来降低电源噪声对采样电路的影响,而功耗较大的TFT驱动模块和步进电机驱动模块则使用了开关型稳压电源,降低了电路系统的整体功耗。

1.2.1 线性稳压电源设计

采样电路供电模块的稳定性决定了采样结果的正确性,因此,需要低电压纹波的线性直流稳压电源来为数据采样模块供电[5]。本系统的线性直流稳压电源使用增加电压压降的设计方式来提升输出电压的稳定性,并且使用多路级联的方式来分散热功耗对单个稳压模块的影响。另外针对工作过程中可能出现的负载波动,设计了较宽的电流范围,并且使用三极管对稳压芯片进行并联扩流,既提升了电路的带负载能力,又不会增加芯片的发热量,提升了电路的可靠性。 线性直流稳压电源的设计如图3所示,使用集成三端稳压芯片LM317为核心,并使用可控精密稳压源TL431作为基准稳压源来对直流稳压电源进行设计。两者都具有低噪声、高纹波抑制比的优点,非常适合线性稳压电源的设计。前级电路使用NPN管Q1对LM317芯片进行扩流,可有效降低芯片的热功耗,后级电路使用TL431芯片作为基准,降低了输出电压纹波。另外,使用PNP管Q2与负载并联,降低了负载波动对稳压效果的影响,提升了电路的带负载能力。

1.2.2 压力采样电路设计

本系统的压力传感器为平行梁式铝合金测力传感器SBT430,该传感器为压阻式应变传感器,其输出信号为一微弱的差分信号,需要对其进行放大和滤波处理后才能进行A/D转换。 压力采样电路使用单一模块的设计方式,避免了多路放大与A/D转换模块级联带来的噪声叠加和温度漂移。选择集成有低噪声可编程放大器、稳压电源以及片内时钟振荡器的HX711芯片来进行设计,可以直接控制STM32F407单片机对其进行采样,既提高了采样稳定性,又简化了电路设计。压力信号采集电路如图4所示。

1.2.3 步进电机驱动电路设计

系统的运动使用57系列步进电机来进行运动控制,该系列步进电机具有运行平稳、可靠性高的特点。工业生产中常使用集成驱动块来对步进电机进行驱动,使用拨码开关对其工作模式进行设定可以应对大部分的工作场景,但是本系统的运动控制需要有较高的灵敏度和更加多样的工作方式。为此,本文使用驱动芯片加STM32F407单片机直接驱动的方式来对步进电机的驱动电路进行设计和优化,针对不同的工作状态,使用单片机来自动选择不同的细分方式、驱动电流和驱动电压频率,使得控制方式更加灵活。步进电机驱动电路如图5所示。

2 软件设计

本文的软件系统主要实现的功能有数据采集、数据发送和系统校正。根据不同电路模块的驱动特点和工作方式的需要,使用模块化编程的思想对各驱动模块、运动控制模块和采样模块进行设计和组合,节省了开发时间,而且便于后期调试和维护。系统设计中将数据采集模块和数据发送模块进行分离,避免了数据发送中的时延对采样等待时间造成的影响,使得采样速度更快。另外,使用自动校正压力传感器压力值和定心支片起始点的设计,节省了仪器校准的时间,并使得系统的输出结果更加准确。系统的软件设计流程如图6所示。

2.1 压力采样值滤波

受电源噪声和外界电磁干扰的影响,对一固定负载进行连续采样时,HX711芯片的输出值会有较大波动。使用数字滤波法来对数据噪声进行滤波处理可以快速去除数据中的噪声干扰,并且不会占用过多的系统资源。常用的数字滤波法有限幅滤波法、中位值滤波法、算术平均法、滑动均值滤波法以及几种方法组合之后的滤波方法[6-8]。结合各滤波法的优缺点和本系统的采样特点,本文采用滑动均值滤波法和中位值滤波法相结合的方式来对压力信号进行处理。滤波算法的实现过程是构建一个长度为N的FIFO(First Input First Output)存储空间,对采样值进行存储,每获得一次数据就对存储空间中的数据做一次中位值滤波(去掉N个数据中的最大值和最小值后,对剩下的N-2个数据做一次算术平均),其结果就为此次滤波后的结果。此方法对信号中的脉冲干扰有很好的抑制效果,且实现简单,占用系统资源较少。

2.2 数据拟合算法设计

由于实验数据的离散性,采集的数据常需要进行拟合或者插值等处理后才能得到反映变量之间相互关系的曲线。本文使用最小二乘法对数据进行拟合[9-12],可以降低数据误差带来的影响,提高拟合优度。

为找出压力值p与位移l之间的关系曲线,需要依据s个实验样本来构造一个函数(l),使得压力计算值(li)与实测值pi的偏差的平方和达到最小。 设n次多项式拟合函数为:     则s个实验样本与拟合函数的残差为:

2.3 最大线性位移查找算法设计

系统计算得到拟合函数后,使用最大线性位移查找算法可以计算得到定心支片的最大线性位移。该算法使用线性逼近法来实现,将顺性曲线的与其切线进行对比,计算得出低于误差阈值ε(ε>0)的最大位移值,即为定心支片的最大位移。 设定心支片的顺性曲线为:

从0 mm开始,以0.01 mm为最小单位,对式(9)进行计算,便可以计算出低于误差阈值的最大位移。另外,通过最大线性位移和拟合曲线可以计算出最大线性受力范围。该方法实现速度快,通过修改阈值可以应用于不同的场合,可移植性好。

2.4 上位机软件设计

本系统的上位机软件设计使用Visual Stdio2010软件来实现,并从系统控制、数据接收和系统通信三个方面来进行设计。系统控制和数据接收主要完成用户指令获取和数据保存的功能。系统通信主要完成上位机软件与单片机之间的指令和数据的传输功能,设计中使用了将数据变量转换成对应的字符进行传输的方法来对数据进行传输,并使用特殊符号标记的方法来区分不同的指令和数据,避免了字符串扰带来的影响,提高了数据传输的可靠性。上位机软件设计界面如图7所示。

3 系统测试

3.1 整体测试

使用本系统对一个5英寸的定心支片进行采样测试来检验系统的测量功能。在上位机软件中设置采样范围为-2.00 mm~2.00 mm,设置线性判断误差阈值为0.004 N,使用上位机软件控制系统进行采样,并对数据进行接收。采样结果和拟合曲线如图8所示,右侧的文本窗显示了被测定心支片的线性范围。

可以得到在线性误差阈值为0.004 N时,该定心支片的位移线性范围为-0.62 mm~0.85 mm,线性受力范围为-0.419 N~0.552 N,可见该定心支片在该阈值下的线性范围并不是上下对称。

3.2 压力测量误差分析

为检验压力采样的准确性,将压力测量值与实际值进行比较。使用不同质量的标准砝码来检测压力采样的精度,采样结果如表1所示。通过对比可知,采样值的最大误差为0.15 g,即压力采样值的误差在0.002 N以内,具有较高的压力采样精度。

4 结论

本文介绍了一种基于STM32F407单片机的扬声器定心支片顺性测量系统,该系统使用动态测量的方式解决了传统定心支片顺性测量仪对定心支片的运动状态把握不准确以及无法获得定心支片的最大线性范围的问题,方便扬声器设计人员对其进行后续的研究和分析,具有一定的使用价值。

参考文献

[1] 王以真.实用扬声器技术手册[M].北京:国防工业出版社,2003.

[2] 王以真.实用扬声器工艺手册[M].北京:国防工业出版社,2006.

[3] 王文建,沙家正.扬声器定心支片的非线性失真研究[J].应用声学,1999(5):24-28.

[4] 闫秉耀.扬声器定心支片的顺性测量仪[J].电声技术,2006(5):29-32,36.

[5] 李承炜,韩俊南,杜欣,等.基于ADS1293的穿戴式心电检测装置设计与实现[J].电子技术应用,2017,43(9):8-12.

[6] 郭健忠,程峰,谢斌,等.改进型限幅递推平均滤波法在燃油表中的应用[J].科学技术与工程,2018,18(16):62-67.

[7] 周继裕,陈思露,符少文.基于均值滑动滤波算法和STM32电子秤的设计[J].现代电子技术,2017,40(10):10-12,15.

[8] 郭富智,杜红棉,李肖姝,等.乒乓球/羽毛球运动状态识别手表的设计[J].电子技术应用,2018,44(4):73-76.

[9] 田子林,陈家新.基于最小二乘法与霍夫变换的虹膜定位算法[J].电子技术应用,2019,45(2):75-79.

[10] 王淳,郭静波,刘红旗,等.基于最小二乘的极低频微弱信号实时检测方法[J].仪器仪表学报,2009,30(12):2468-2473.

[11] 黄静,刘琴琴.基于曲线拟合改进算法的水质生物毒性研究[J].仪表技术与传感器,2017(7):105-107,120.

[12] 贾小勇,徐传胜,白欣.最小二乘法的创立及其思想方法[J].西北大学学报(自然科学版),2006(3):507-511.

[13] 同济大学数学系.线性代数[M].北京:高等教育出版社,2007.


关键字:STM32F407  单片机 引用地址:基于STM32F407单片机开发了一种定心支片顺性测量系统

上一篇:基于Pixart PAH8013ES+STM32F411实现耳机血氧与心率的检测方案
下一篇:采用STM32F407芯片进行发动机状态监测系统的设计

推荐阅读最新更新时间:2024-11-02 12:34

AT89C 系列单片机解密原理
单片机解密简单就是擦除单片机片内的加密锁定位。由于AT89C系列单片机擦除操作时序设计上的不合理。使在擦除片内程序之前首先擦除加密锁定位成为可能。AT89C系列单片机擦除操作的时序为:擦除开始---- 擦除操作硬件初始化(10微秒)---- 擦除加密锁定位(50----200微秒)--- 擦除片内程序存储器内的数据(10毫秒)----- 擦除结束。如果用程序监控擦除过程,一旦加密锁定位被擦除就终止擦除操作,停止进一步擦除片内程序存储器,加过密的单片机就变成没加密的单片机了。片内程序可通过总线被读出。对于AT89C系列单片机有两种不可破解的加密方法。 一、永久性地破坏单片机的加密位的加密方法。简称OTP加密模式。 二、永久性地
[单片机]
基于PSoC的车用单片机试验装置设计
    引言   汽车单片机教学实验通常需要信号发生器、示波器等很多辅助设备,这不但给实验及教学带来很多的麻烦,而且造价昂贵。   为了减少实验辅助设备,降低实验成本,本文在PSoC CY8C29466芯片的基础上,开发了一套集成有PWM输出、不同频率采集、UATR通信并可通过液晶LCD显示相应数据的装置。该装置在汽车电子单片机教学中可代替现行的大多数实验辅助设备,并可简化实验的操作步骤、降低实验成本,从而给实验及教学带来很大方便。   1 系统组成结构   SoC(System on Chip)是将整个电子系统集成在同一芯片上的片上系统,或称为系统级芯片。2000年,Cypress公司推出了完全基于通用IP核,由可编
[单片机]
基于CAN总线的电梯外呼系统方案设计
随着现代社会的发展,科学技术的进步,出现了众多高层建筑和智能建筑。电梯,作为高层建筑内部一种重要的交通工具,其应用规模日益扩大。而作为电梯系统中必不可少的一部分,电梯召唤显示板(简称电梯外呼板)的应用也随之剧增。 电梯外呼板应用于每层楼的电梯门外,供乘客及电梯维保人员使用。电梯外呼板将乘客及维保人员的需求信息通过CAN总线传达给电梯主板,电梯主板接收信息并执行相应的操作。同时,电梯主板将电梯的实时运行信息通过CAN总线传递给电梯外呼板,通过外呼板LED显示出来,供乘客参阅。 AVR单片机具有高可靠性、功能强、高速度、低功耗和低价位的特点,本系统选用了高档ATmega列AVR单片机ATmegal6。它具有先进的RI- SC结构,具有1
[单片机]
基于CAN总线的电梯外呼系统方案设计
基于51单片机的低功耗设计
  引 言   在控制终端系统设计中,当系统要求整体功耗偏低时,C8051F系列单片机是一个最佳的选择。它们拥有灵活的时钟硬件,使系统能够方便地在高效运作模式与低功耗模式问进行转换,智能的电源管理模式能够在正常工作及待机状态自由切换,从而降低整个系统的能量损耗;当工作频率低于10kHz时,时钟丢失检测器(MCD)能够引发系统产生复位,确保系统工作的安全可靠。   1 C8051F各部分组件的功耗   当一个系统对功耗要求严格时,可以在硬件电路建立前首先粗略计算一下整个系统所需的功耗。由于C8051F系列单片机为数模混合SOC系统,能够实现整个设计的大部分功能,因此整个设计系统的功耗将主要集中在C805IF系列单片机的能量消耗
[单片机]
51单片机长按键测试程序
#include reg52.h #include stdio.h /* 程序功能: 本程序用于测试4X4矩阵键盘; 且具有长按测能力. 当按下按键后,在LCD1602上显示出按下的键号如:K1 K2.... K16; 当按下一个按键 超过1S时间时,每250MS就返回一个键值;实现长按键的功能; 同时把键值通过串口发送到口上显示; 程序说明:这是一种传通的采用延时来进行按键扫描按键驱动与测试程序;这种方法在 实际项目编程中是不使用的。 用在教学中 ,学生刚开始学习单片机时。 注意:在此程序中只显示了K4长按凳时情况。若要想对其它铵键长按处理,只需要增加 相关的
[单片机]
保证MCU低功耗 这五点很重要
低功耗是MCU的一项非常重要的指标,比如某些可穿戴的设备,其携带的电量有限,如果整个电路消耗的电量特别大的话,就会经常出现电量不足的情况,影响用户体验。   平时我们在做产品的时候,基本的功能实现很简单,但只要涉及低功耗的问题就比较棘手了,比如某些可以低到微安级的MCU,而自己设计的低功耗怎么测都是毫安级的,电流竟然能够高出标准几百到上千倍,遇到这种情况千万不要怕,只要认真你就赢了。下边咱们仔细分析一下这其中的原因。   第一条:掐断外设命脉——关闭外设时钟   先说最直观的,也是工程师都比较注意的方面,就是关闭MCU的外设时钟,对于现在市面上出现的大多数的MCU,其外设模块都对应着一个时钟开关。只需要打开这个外设的时钟,就可以正
[单片机]
保证<font color='red'>MCU</font>低功耗 这五点很重要
采用8位单片机驱动PCI总线网卡的设计方案
目前,以太网(Ethernet)协议已经非常广泛地应用于各种计算机网络,如办公局域网、工业控制网络、因特网等场合,并且还不断地在发展。单片机或微控制器(MCU)(也称为嵌入式系统)已经在各个领域得到了广泛的应用。目前绝大多数系统都是以MCU为核心,与监测、伺服、指示设备配合实现一定的功能。如果嵌入式系统能够连接到Internet,则可以方便、低廉地将信息传送到世界上的任何一个地方。因此单片机如何控制以太网网卡进行传输数据,如何加载TCP/IP协议连接到互联网,这些都是一些具有挑战性的问题[1,2]。 单片机上网研究最多的一个方案就是用单片机驱动ISA总线网卡或者是驱动基于ISA总线的以太网控制芯片。但是,近年来,随着ISA总线在台
[单片机]
域控软件安全隔离关键技术剖析:MCU域 VS SOC域
安全隔离的需求 功能安全开发中,软件阶段由软件V模型左边的软件安全需求SSR开始。SSR是从技术安全需求TSR中提取出软件的功能安全需求,大多数情况下具有不同的ASIL等级。 图1功能安全软件开发V模型 随后,软件安全需求会被分配到软件架构中的软件组件中。不同ASIL等级的软件安全需求被分配到软件组件过后,带来了级联失效的问题。若放任不同ASIL等级软件组件在一个系统中运行,可能会存在低ASIL等级软件组件失效从而引发高ASIL等级软件组件失效的风险。 ISO26262对软件组件之间的交互进行了分析并提出了免于干扰(Freedom from Interference)的需求,安全隔离则旨在隔离软件系统中安全相关与安全无关
[嵌入式]
域控软件安全隔离关键技术剖析:<font color='red'>MCU</font>域 VS SOC域
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved