ADC简介及功能框图讲解

发布者:WhisperingWish最新更新时间:2024-06-28 来源: elecfans关键字:ADC  功能框图  精度 手机看文章 扫描二维码
随时随地手机看文章

ADC简介

STM32F103系列有3个ADC,精度为12位,每个ADC最多有16个外部通道。其中ADC1和ADC2都有16个外部通道,ADC3一般有8个外部通道,各通道的A/D转换可以单次、连续、扫描或间断执行,ADC转换的结果可以左对齐或右对齐储存在16位数据寄存器中。ADC的输入时钟不得超过14MHz,其时钟频率由PCLK2分频产生。


ADC功能框图讲解

学习STM32开发板上的外设时首先要了解其外设的功能框图,如下:

b8eae896-2e8d-11ed-ba43-dac502259ad0.png

功能框图可以大体分为7部分,下面一一讲解:

电压输入范围

ADC所能测量的电压范围就是VREF- ≤ VIN ≤ VREF+,把 VSSA 和 VREF-接地,把 VREF+和 VDDA 接 3V3,得到ADC 的输入电压范围为:0~3.3V。


输入通道

ADC的信号输入就是通过通道来实现的,信号通过通道输入到单片机中,单片机经过转换后,将模拟信号输出为数字信号。STM32中的ADC有着18个通道,其中外部的16个通道已经在框图中标出,如下:

b91ad646-2e8d-11ed-ba43-dac502259ad0.png

 这16个通道对应着不同的IO口,此外ADC1/2/3 还有内部通道:ADC1 的通道 16 连接到了芯片内部的温度传感器, Vrefint 连接到了通道 17。ADC2 的模拟通道 16 和 17 连接到了内部的 VSS。


ADC的全部通道如下图所示:

b92ae4a0-2e8d-11ed-ba43-dac502259ad0.png

外部的16个通道在转换时又分为规则通道和注入通道,其中规则通道最多有16路,注入通道最多有4路(注入通道貌似使用不多),下面简单介绍一下两种通道:


规则通道顾名思义就是,最平常的通道、也是最常用的通道,平时的ADC转换都是用规则通道实现的。


注入通道是相对于规则通道的,注入通道可以在规则通道转换时,强行插入转换,相当于一个“中断通道”吧。当有注入通道需要转换时,规则通道的转换会停止,优先执行注入通道的转换,当注入通道的转换执行完毕后,再回到之前规则通道进行转换。


转换顺序

知道了ADC的转换通道后,如果ADC只使用一个通道来转换,那就很简单,但如果是使用多个通道进行转换就涉及到一个先后顺序了,毕竟规则转换通道只有一个数据寄存器。多个通道的使用顺序分为俩种情况:规则通道的转换顺序和注入通道的转换顺序。


规则通道中的转换顺序由三个寄存器控制:SQR1、SQR2、SQR3,它们都是32位寄存器。SQR寄存器控制着转换通道的数目和转换顺序,只要在对应的寄存器位SQx中写入相应的通道,这个通道就是第x个转换。具体的对应关系如下:

b948b4d0-2e8d-11ed-ba43-dac502259ad0.png

通过SQR1寄存器就能了解其转换顺序在寄存器上的实现了:

b965228c-2e8d-11ed-ba43-dac502259ad0.png

    和规则通道转换顺序的控制一样,注入通道的转换也是通过注入寄存器来控制,只不过只有一个JSQR寄存器来控制,控制关系如下:

b974b5ee-2e8d-11ed-ba43-dac502259ad0.png

    需要注意的是,只有当JL=4的时候,注入通道的转换顺序才会按照JSQ1、JSQ2、JSQ3、JSQ4的顺序执行。当JL<4时,注入通道的转换顺序恰恰相反,也就是执行顺序为:JSQ4、JSQ3、JSQ2、JSQ1。

    配置转换顺序的函数如下代码所示:

/**

  * @brief  Configures for the selected ADC regular channel its corresponding

  *         rank in the sequencer and its sample time.

  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.

  * @param  ADC_Channel: the ADC channel to configure. 

  *   This parameter can be one of the following values:

  *     @arg ADC_Channel_0: ADC Channel0 selected

  *     @arg ADC_Channel_1: ADC Channel1 selected

  *     @arg ADC_Channel_2: ADC Channel2 selected

  *     @arg ADC_Channel_3: ADC Channel3 selected

  *     @arg ADC_Channel_4: ADC Channel4 selected

  *     @arg ADC_Channel_5: ADC Channel5 selected

  *     @arg ADC_Channel_6: ADC Channel6 selected

  *     @arg ADC_Channel_7: ADC Channel7 selected

  *     @arg ADC_Channel_8: ADC Channel8 selected

  *     @arg ADC_Channel_9: ADC Channel9 selected

  *     @arg ADC_Channel_10: ADC Channel10 selected

  *     @arg ADC_Channel_11: ADC Channel11 selected

  *     @arg ADC_Channel_12: ADC Channel12 selected

  *     @arg ADC_Channel_13: ADC Channel13 selected

  *     @arg ADC_Channel_14: ADC Channel14 selected

  *     @arg ADC_Channel_15: ADC Channel15 selected

  *     @arg ADC_Channel_16: ADC Channel16 selected

  *     @arg ADC_Channel_17: ADC Channel17 selected

  * @param  Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16.

  * @param  ADC_SampleTime: The sample time value to be set for the selected channel. 

  *   This parameter can be one of the following values:

  *     @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles

  *     @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles

  *     @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles

  *     @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles

  *     @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles

  *     @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles

  *     @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles

  *     @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles

  * @retval None

  */

void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)

{

  函数内容略;

}


触发源

    ADC转换的输入、通道、转换顺序都已经说明了,但ADC转换是怎么触发的呢?就像通信协议一样,都要规定一个起始信号才能传输信息,ADC也需要一个触发信号来实行模/数转换。

    其一就是通过直接配置寄存器触发,通过配置控制寄存器CR2的ADON位,写1时开始转换,写0时停止转换。在程序运行过程中只要调用库函数,将CR2寄存器的ADON位置1就可以进行转换,比较好理解。

    另外,还可以通过内部定时器或者外部IO触发转换,也就是说可以利用内部时钟让ADC进行周期性的转换,也可以利用外部IO使ADC在需要时转换,具体的触发由控制寄存器CR2决定。

    在参考手册中可以找到,ADC_CR2寄存器的详情如下:

b98724cc-2e8d-11ed-ba43-dac502259ad0.png

b99cfcde-2e8d-11ed-ba43-dac502259ad0.png

b9c9057c-2e8d-11ed-ba43-dac502259ad0.png

转换时间

    还有一点,就是转换时间的问题,ADC的每一次信号转换都要时间,这个时间就是转换时间,转换时间由输入时钟和采样周期来决定。

    由于ADC在STM32中是挂载在APB2总线上的,所以ADC得时钟是由PCLK2(72MHz)经过分频得到的,分频因子由 RCC 时钟配置寄存器RCC_CFGR 的位 15:14 ADCPRE[1:0]设置,可以是 2/4/6/8 分频,一般配置分频因子为8,即8分频得到ADC的输入时钟频率为9MHz。

    采样周期是确立在输入时钟上的,配置采样周期可以确定使用多少个ADC时钟周期来对电压进行采样,采样的周期数可通过 ADC采样时间寄存器 ADC_SMPR1 和 ADC_SMPR2 中的 SMP[2:0]位设置,ADC_SMPR2 控制的是通道 0~9, ADC_SMPR1 控制的是通道 10~17。每个通道可以配置不同的采样周期,但最小的采样周期是1.5个周期,也就是说如果想最快时间采样就设置采样周期为1.5.

  •  

转换时间=采样时间+12.5个周期

    12.5个周期是固定的,一般我们设置 PCLK2=72M,经过 ADC 预分频器能分频到最大的时钟只能是 12M,采样周期设置为 1.5 个周期,算出最短的转换时间为 1.17us。

数据寄存器

    转换完成后的数据就存放在数据寄存器中,但数据的存放也分为规则通道转换数据和注入通道转换数据的。

    规则数据寄存器负责存放规则通道转换的数据,通过32位寄存器ADC_DR来存放:

b9db8698-2e8d-11ed-ba43-dac502259ad0.png

    当使用ADC独立模式(也就是只使用一个ADC,可以使用多个通道)时,数据存放在低16位中,当使用ADC多模式时高16位存放ADC2的数据。需要注意的是ADC转换的精度是12位,而寄存器中有16个位来存放数据,所以要规定数据存放是左对齐还是右对齐。

    当使用多个通道转换数据时,会产生多个转换数据,然鹅数据寄存器只有一个,多个数据存放在一个寄存器中会覆盖数据导致ADC转换错误,所以我们经常在一个通道转换完成之后就立刻将数据取出来,方便下一个数据存放。一般开启DMA模式将转换的数据,传输在一个数组中,程序对数组读操作就可以得到转换的结果。

    DMA的使用之前介绍过,请移步此处:DMA介绍。

    注入通道转换的数据寄存器有4个,由于注入通道最多有4个,所以注入通道转换的数据都有固定的存放位置,不会跟规则寄存器那样产生数据覆盖的问题。ADC_JDRx 是 32 位的,低 16 位有效,高 16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由ADC_CR2 的 11 位 ALIGN 设置。

ba0260c4-2e8d-11ed-ba43-dac502259ad0.png

中断

ba143ec0-2e8d-11ed-ba43-dac502259ad0.png        从框图中可以知道数据转换完成之后可以产生中断,有三种情况:

  • 规则通道数据转换完成之后,可以产生一个中断,可以在中断函数中读取规则数据寄存器的值。这也是单通道时读取数据的一种方法。

  • 注入通道数据转换完成之后,可以产生一个中断,并且也可以在中断中读取注入数据寄存器的值,达到读取数据的作用。

  • 当输入的模拟量(电压)不再阈值范围内就会产生看门狗事件,就是用来监视输入的模拟量是否正常。

    以上中断的配置都由ADC_SR寄存器决定:

ba200db8-2e8d-11ed-ba43-dac502259ad0.png

    当然,在转换完成之后也可以产生DMA请求,从而将转换好的数据从数据寄存器中读取到内存中。


电压转换


    要知道,转换后的数据是一个12位的二进制数,我们需要把这个二进制数代表的模拟量(电压)用数字表示出来。比如测量的电压范围是0~3.3V,转换后的二进制数是x,因为12位ADC在转换时将电压的范围大小(也就是3.3)分为4096(2^12)份,所以转换后的二进制数x代表的真实电压的计算方法就是:


 

y=3.3* x / 4096

初始化结构体


    每个外设的核心就是其对应的初始化结构体了,ADC的初始化结构体代码如下:


 

 

 

 

 

 

 

 

 

typedef struct

 {

uint32_t ADC_Mode; // ADC 工作模式选择

 FunctionalState ADC_ScanConvMode; // ADC 扫描(多通道)或者单次(单通道)模式选择 

 FunctionalState ADC_ContinuousConvMode; // ADC 单次转换或者连续转换选择

uint32_t ADC_ExternalTrigConv; // ADC 转换触发信号选择

uint32_t ADC_DataAlign; // ADC 数据寄存器对齐格式

uint8_t ADC_NbrOfChannel; // ADC 采集通道数

 } ADC_InitTypeDef;

    通过配置初始化结构体来设置ADC的相关信息。


单通道电压采集


    用这个程序来简单熟练一下ADC的单通道电压采集吧,程序使用了ADC1的通道11,对应的IO口是PC^1,因为博主的开发板上PC ^1引脚没有任何复用,使用中断,在中断中读取转换的电压。


头文件


    为了提高文件的可移植性,头文件中定义了一些与ADC和中断相关的量,在移植程序的时候只需要修改头文件中的定义即可。


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#ifndef __ADC_H

#define __ADC_H

#include 'stm32f10x.h'

/* 采用ADC1的通道11  引脚为PC^1 模式必须是模拟输入*/

#define ADC_GPIO_RCC     RCC_APB2Periph_GPIOC

#define ADC_GPIO_PORT    GPIOC

#define ADC_GPIO_PIN     GPIO_Pin_1

#define ADC_GPIO_MODE    GPIO_Mode_AIN  

/* 配置与中断有关的信息 */

#define ADC_IRQn         ADC1_2_IRQn

#define ADC_RCC          RCC_APB2Periph_ADC1

/* 配置ADC初始化结构体的宏定义 */

#define ADCx                          ADC1

#define ADCx_ContinuousConvMode       ENABLE                      //连续转换模式

#define ADCx_DataAlign                ADC_DataAlign_Right         //转换结果右对齐

#define ADCx_ExternalTrigConv         ADC_ExternalTrigConv_None      //不使用外部触发转换,采用软件触发

#define ADCx_Mode                     ADC_Mode_Independent        //只使用一个ADC,独立模式

#define ADCx_NbrOfChannel             1                          //一个转换通道

#define ADCx_ScanConvMode             DISABLE                     //禁止扫描模式,多通道时使用

/* 通道信息和采样周期 */

#define ADC_Channel                   ADC_Channel_11

#define ADC_SampleTime                ADC_SampleTime_55Cycles5

/* 函数声明 */

void ADC_COnfig(void);

void ADC_NVIC_Config(void);

void ADC_GPIO_Config(void);

void ADCx_Init(void);

#endif  /* __ADC_H */

引脚配置函数


    首先配置相应的GPIO引脚,毕竟模拟信号是通过GPIO引脚传输到开发板的,注意的是,引脚的模式一定要是模拟输入!


 

 

 

 

 

 

 

 

void ADC_GPIO_Config(void)

{

GPIO_InitTypeDef   GPIO_InitStruct;

RCC_APB2PeriphClockCmd(ADC_GPIO_RCC,  ENABLE);

GPIO_InitStruct.GPIO_Pin = ADC_GPIO_PIN ;

GPIO_InitStruct.GPIO_Mode = ADC_GPIO_MODE ;

GPIO_Init(ADC_GPIO_PORT , &GPIO_InitStruct);

}

    配置引脚就是老套路:声明结构体变量、开启时钟、写入结构体、初始化GPIO。


NVIC配置函数


    因为我们是在转换完成后利用中断,在中断函数中读取数据,所以要首先配置中断函数的优先级,因为程序中只有这一个中断,所以优先级的配置就比较随意。


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void ADC_NVIC_Config(void)

{

NVIC_InitTypeDef NVIC_InitStruct ;

/* 配置中断优先级分组(设置抢占优先级和子优先级的分配),在函数在misc.c */

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ;

/* 配置初始化结构体 在misc.h中 */

/* 配置中断源 在stm32f10x.h中 */

NVIC_InitStruct.NVIC_IRQChannel = ADC_IRQn ;

/* 配置抢占优先级 */

NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1 ;

/* 配置子优先级 */

NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1 ;

[1] [2]
关键字:ADC  功能框图  精度 引用地址:ADC简介及功能框图讲解

上一篇:RTC时钟与触摸功能详解(下)
下一篇:基于FreeRTOS的机智云接入教程分享

推荐阅读最新更新时间:2024-11-17 16:16

PIC16F15323单片机 (ADC+温度传感器)--汇编+C语言
1 基本原理 1.1 AD原理 见前面的文章 1.2 温度储传感器原理 1.3 FVR原理 2 实现代码 /*---------------------------------函数功能:------------------------------------- 采集MCU的温度,并且用RC0口(LED)来判断是否采集完成,如果温度采集AD完成,则 * AD对应的标志位ADIF=1,如果使能有效,则会产生一个中断,此时LED灯亮。 编程思路:参考手册的P131 To do an A/D Conversion, follow these steps --------------------------
[单片机]
PIC16F15323单片机 (<font color='red'>ADC</font>+温度传感器)--汇编+C语言
ADC0804测直流电压
/*     ADC0804属于8位CMOS三态锁定输出逐次逼近型A/D转换器,存取时间135us,转换时间100us,总误差 1LSB。现在讲一下它的转换原理和硬件连接: 它的管脚有20个: /CS:芯片选通信号,低电平选通,只有CS为低电平的时候,芯片才被选通工作(但不一定开始数据转换,由/WR 控制起停转换)。 /RD:读宣统信号,也就是外部单片机读取转换结果的控制信号,/RD为高电平,DB0~DB7处于高阻态,处于低电 平数字数据才会输出。 /WR:启动转换的控制输入,转换的开始与停止由它控制,/CS=0的前提下,/WR由高变为低,转换器被清除,/WR 由低变为高,转换正式开始。 CLK
[单片机]
TI DLP®技术将工业级精度带入民用,是一种怎样的体验?
凭借极快的速度、宽波长范围、高效率等优点,TI DLP® 技术正在工业领域拥有越来越多的创新应用。当这种工业级的精度用在了民用产品,又会是怎样的体验呢? TI 近日发布的 DLP Pico™ 控制器DLPC347x 恰恰为这种体验创造了条件。 将 DLP Pico 引入新应用 最新的DLPC347x控制器采用了高性能工业级应用中常见的微米至亚毫米分辨率,较小的封装尺寸,适用于桌面3D打印机和便携式3D扫描仪。开发人员可将新型DLPC3470、DLPC3478或DLPC3479控制器与现有四种DLP Pico数字微镜器件( DMD )(DLP2010 DMD (480p)、DLP2010NIR DMD(480p)、DL
[嵌入式]
TI DLP®技术将工业级<font color='red'>精度</font>带入民用,是一种怎样的体验?
为什么要关注示波器 ADC 位数或者是 ENOB?- 了解信号的完整性
示波器ADC 位数与有效位数 示波器中的模数转换器(ADC)位数是最广为人知的技术指标之一。许多工程师将它视为决定示波器质量的唯一技术指标。但是,他们往往过于夸大ADC位数的重要性,而忽视了信号完整性的其他关键指标。 与 ADC 位数同样重要的是系统的有效位数(系统 ENOB)。系统 ENOB 是进行测量时的实际有效位数。在任意示波器中,有些 ADC 位是没有意义的,它们只 能在噪声中工作。因此,决定示波器测量质量的是 ENOB 而不是 ADC 位数。如果测量质量太差,那么得到的结果是不准确的,而且无法复现。这样可能会导致您在设计中采取错误的假设。 ENOB 能够更好地指示信号完整性,因为它将系统误差也考虑在内。 许多工程师没有听
[测试测量]
为什么要关注示波器 <font color='red'>ADC</font> 位数或者是 ENOB?- 了解信号的完整性
AVR ADC编程
程序是移植叶老师的教程的,结合我的板子的例程作了一部分改动。 1602部分就通过包含 1602.h 来简单处理了,不知道这样的习惯是不是不怎么好。。。。 #include iom16v.h #include macros.h #include 1602.h #define uint unsigned int #define uchar unsigned char uint ad(uchar chl) { uint data; DDRA&=~(BIT(3)|BIT(4)); PORTA&=~(BIT(3)|BIT(4)); ADMUX=0X40|chl; //ADCSR=0b1000000; ADCSR=0X80; A
[单片机]
AVR <font color='red'>ADC</font>编程
STM32F0xx的ADC配置
STM32F0xx系列单片机基于ST官方标准库V1.5.0的ADC功能的配置 ADC.c文件 #include ADC.h uint32_t ADC1ConvertedValue = 0, ADC1ConvertedVoltage = 0; void ADC_GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); //端口配置 // GPIO_StructInit(&GPIO_InitStructure); GPIO_InitSt
[单片机]
∑-ΔADC(第三部分):新诀窍
ADC首先要考虑的基本要求是分辨率、精度和带宽:其它需要考虑的重要事项包括信噪性能、失真和等待时间。一些应用需要快速响应来处理来自传感器的高频或者连续读数。而在另一些应用中,在ADC内多路传输多重信号的能力很重要,例如,对于那些能够同步监控和集成来自多个传感器的实时输入信息的PLC。   设备成本以及任何所需支持电路的成本对于组件的选择同样重要。这对于ADC来说是非常重要的,尤其是当被应用到高性能多路传输环境中时,因为根据所选ADC的类型,所需的支持电路会有很大的差别。   传统的SAR方法   通常情况下,之前提到的高性能应用类型是根据逐次求近寄存器(SAR)ADC设计的,这类ADC可以及时在各个连续点处提供一系列“瞬像”
[模拟电子]
∑-Δ<font color='red'>ADC</font>(第三部分):新诀窍
LPC2148的ADC多通道数据采集程序
#include config.h #include stdio.h #define GPIOSET(PIN) IO0SET = PIN // 方便修改置位端口 #define GPIOCLR(PIN) IO0CLR = PIN // 方便修改清位端口 #define LCD_CON 0x00000250 // 液晶显示控制字 #define E_CLK (1 4) //clock input 同步时钟输入端 P0.4 const uint32 RW_SID= (1 6); //data input/output 串行数据输入、输出端 P0.6
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved