摘要:利用定时器产生PWM波。然后利用32的外部中断和定时器来测量32输出的波形硬件:STM32F103C8T6核心板、示波器、串口调试助手所用到的的引脚为PA8和PA0。测量方案:在第一次外部中断(上升沿触发)到之时,开启定时器,同时计数器清零。
然后等待第二次中断到来,在第二次外部中断(上升沿触发)到之时,获取计数器的计数值,同时关闭计数器。因为知道了计数器计数一个数的时间,所以在第二次外部中断(上升沿触发)到之时,获取计数器的计数值,通过这个值就知道一个脉冲的时间周期。时间周期的倒数就是外部信号的频率。
一、利用TIM1的CH1产生PWM波
pwm.c
pwm.h
main.c
定时器1的通道1对应的是PA8引脚,连接示波器可以测出波形
二、将PA8与PA0相连接
这里利用PA8输出的PWM波形让PA0外部中断引脚测量。
三、外部中断和定时器测量频率
在配置定时器时最重要的就是配置定时器的预分频系数和重装载值。定时器的本质就是一个计数器,计数到我们设定的值后就会溢出,也就是重新从0开始开始计数。设置预分频系数就是设置计数器的频率,假设为71,F1的系统时钟为72M,经过72分频,给计数器的时钟频率就是1M,周期就是1/1M=1us。也是就1us计一个数。那么计几个数呢?这就要看重装载值ARR,这里我们设置为0XFFFF,也就是计数65536个数,就是计满整个寄存器的值。为什么要分频系数为72,重装载值为0XFFFF?这里给出详细的分析过程。
1 为什么要分频系数为72 F1的系统时钟为72M,F1的系统时钟为72M,如果不分频的话,提供给定时器的时钟就直接是72MHZ。72MHz是个什么概念?72MHz它对应的周期就是(1/72000000)秒,也就是计数器从0计数到最大值65535,只需要花费(65535/72000000)秒≈1ms。
这句话的意思就是如果你不分频,计数器最大只能定时1ms。那么你的定时器每隔1ms就会溢出一次。如果经过72分频,给计数器的时钟频率就是1M,周期就是1/1M=1us,也是就1us计一个数。换句话就是可以采样的波形频率为1M,提高了采样频率。另一方面也是容易计算,计一个数1us,计count个数就是count个us,频率就是1000000/count(HZ)。
2 为什么要重装载值为0XFFFF 最大采样间隔是跟定时器的中断间隔相关的,定时器产生溢出中断后计数值CNT会自动清0,定时器的中断间隔由分频系数Prescaler和自动重装载寄存器Period决定,分频系数前面已经确定,那最大采样间隔只需要考虑自动重装载寄存器Period的设置。
比如频分析系数71,自动重装寄存器值65535,则中断间隔=65536/72000000/72=65.536ms,即最大采样间隔65.536ms,如果65.536ms内没有检测到一个脉冲,则这么设定间隔是不合理的,必须想办法牺牲最小的采样时间1us(扩大分频系数)或者扩大自动重装寄存器值(16位<65535)来增加定时器中断间隔,也可以编写自己的应用函数来计算溢出的定时时间。
一般来说我们使用外部中断是不需要用到定时器的,看原子和野火的外部中断实验也没有用到外部中断。但是现在不是利用外部中断简单的处理一件事,而是利用外部中断测量频率,而测频率就涉及到时间,而只要涉及到时间,就需要用到定时器了。测量外部信号的频率,就是测量PWM波对吧!
如果我们测量到一个周期的时间,那么不就知道了信号的频率了吗?测量方案:在第一次外部中断(上升沿触发)到之时,开启定时器,同时计数器清零。然后等待第二次中断到来,在第二次外部中断(上升沿触发)到之时,获取计数器的计数值,关闭计数器。因为我们知道了计数器计数一个数的时间,所以我们到在第二次外部中断(上升沿触发)到之时,获取计数器的计数值,通过这个值就知道一个脉冲的时间周期。时间周期的倒数就是外部信号的频率。
具体代码如下:
当然你可能觉得这只是测量信号的一个周期脉冲不够准确,那么也可以测量100次脉冲的时间再除以100,就是一个脉冲的时间,然后再取倒数就可以算出频率,这种方法也是可以的。具体代码如下:
程序流程图
串口打印结果
当然测量信号频率的方法可以直接利用TIM的输入捕获的方法就可以实现。用外部中断只是另一种测量方案,具体用哪一种还要看具体情况。
上一篇:riscv中gd32vf103的中断行为分析
下一篇:如何实现模拟看门狗?
推荐阅读最新更新时间:2024-11-01 19:39
设计资源 培训 开发板 精华推荐
- DER-713 - 使用 InnoSwitch3-EP PowiGaN 和 MinE-CAP 的 65 W 高功率密度适配器
- MIC2077-2 Quad USB 配电开关的典型应用
- EVAL-ADUC7126QSPZ,用于评估 ADuC7126 ARM7 MCU + 32 位的 QuickStart Plus 开发系统,通过 UART/汇编/C 源调试环境进行调试
- 李宇龙-1810300314-课程设计1
- LT6657AHMS8-1.25 1.5V 最小电源电压的典型应用电路
- LTC3630EDHC 5V 至 65V 输入至 5V 输出、高效率、500mA 稳压器的典型应用电路
- LT1354 的典型应用 - 12MHz、400V/us 运算放大器
- MAXREFDES1130:低输出电压纹波设计,采用MAX17509具有集成开关、0.9V / 2A和1.2V / 2A双路输出降压型DC-DC转换器
- 基于STAC4932B的用于3 T MRI的2 kW / 100 V RF演示板
- Arduino双绝组合:基于iMX8和STM32H747开发板