一、实验环境
1.1 虚拟机环境
a) Vmware版本:Vmware Workstation 12.5.7
b) Ubuntu版本:9.10
c) 内核版本:2.6.31.14
d) toolchain版本:arm-linux-gcc 4.3.2
1.2 开发板
优龙FS2410开发板,UDA1341声卡
内核版本:3.4.2
二、概述
2.1 目标
之前在写裸板程序时,已经了解了怎样写代码来操作硬件,设置参数,传输数据。现在的任务就是按照ASOC的框架,来重新写这些代码(难点在于理解软件框架)
2.2 哪些地方的代码会涉及到参数设置
根据之前“分析调用过程”那节视频中,用strace跟踪的结果,总结出以下几个地方的代码会涉及到参数设置:
1. soc_pcm_open依次调用cpu_dai, platform(dma), codec_dai, machine的open或startup函数,经查:
cpu_dai
s3c24xx_i2s_dai.ops(即s3c24xx_i2s_dai_ops),无startup函数
platform(dma)
samsung_asoc_platform.ops(即dma_ops).dma_open里:snd_pcm_hw_constraint_integer,snd_soc_set_runtime_hwparams(&dma_hardware)
codec_dai
uda134x_dai_ops.startup即uda134x_startup 里:
snd_pcm_hw_constraint_minmax(SNDRV_PCM_HW_PARAM_RATE), snd_pcm_hw_constraint_minmax(SNDRV_PCM_HW_PARAM_SAMPLE_BITS)
machine
s3c24xx_uda134x_dai_link.ops(即s3c24xx_uda134x_ops).startup即s3c24xx_uda134x_startup里:
主要工作是设置rate[]的值(算法原理可参考:在uda1341的i2s中256fs,384fs和512fs表示的实际意义和如何auto智能选择)
通过分析这些函数可知,它们并没有涉及到硬件操作,所以我们把它们都归并到dma_open里实现
2. soc_pcm_hw_params依次调用machine,codec_dai,cpu_dai,platform(dma)的hw_params函数
machine
s3c24xx_uda134x .hw_params 即s3c24xx_uda134x_hw_params
codec_dai
uda134x_dai_ops.hw_params 即uda134x_hw_params
cpu_dai
s3c24xx_i2s_dai_ops.hw_params 即s3c24xx_i2s_hw_params
platform(dma)
samsung_asoc_platform.ops(即dma_ops). hw_params 即dma_hw_params
通过分析这些函数可知,它们涉及到了硬件操作,所以我们需要分别在这些hw_params函数所属的驱动中实现
三、具体实现
3.1 实现dma_open
(参考:soundsocsamsungdma.c)
static const struct snd_pcm_hardware s3c2440_dma_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_U16_LE |
SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S8,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 128*1024,
.period_bytes_min = PAGE_SIZE,
.period_bytes_max = PAGE_SIZE*2,
.periods_min = 2,
.periods_max = 128,
.fifo_size = 32,
};
static int s3c2440_dma_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int ret;
//去掉了和prtd相关的代码,因为这是samsung自己定义的用于dma操作的数据结构,我们不使用,而是自己来实现dma操作
/* 设置属性 */
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); //约束:采样周期必须是整数
snd_soc_set_runtime_hwparams(substream, &s3c2440_dma_hardware); //后续的snd_pcm_hw_constraints_complete会使用runtime->hw里的信息来调用一系列的snd_pcm_hw_constraint_xxx
return 0;
}
3.2 实现machine、codec_dai、cpu_dai、platform(dma)的hw_params函数
注:由于codec_dai(uda1341_hw_params)涉及代码最复杂,所以放在最后实现
3.2.1 实现s3c2440_uda1341.hw_params 即s3c2440_uda1341_hw_params
分析内核的s3c24xx_uda134x_hw_params()可知:它主要是调用了snd_soc_dai_set_fmt、snd_soc_dai_set_sysclk、snd_soc_dai_set_clkdiv来设置cpu_dai和codec_dai的数据格式以及时钟,而这些工作可以拆开后分别放在cpu_dai(见下文s3c2440_i2s_hw_params)和codec_dai(见下文uda1341_hw_params ())中。所以s3c2440_uda1341_hw_params不用实现。
注:关于怎样根据app提供的rate来计算clk、clk_source、fs_mod、div,可参考:在uda1341的i2s中256fs,384fs和512fs表示的实际意义和如何auto智能选择
3.2.2 实现s3c2440_i2s_dai_ops.hw_params 即s3c2440_i2s_hw_params
struct s3c2440_iis_regs {
unsigned int iiscon ;
unsigned int iismod ;
unsigned int iispsr ;
unsigned int iisfcon;
unsigned int iisfifo;
};
static volatile unsigned int *gpecon;
static volatile struct s3c2440_iis_regs *iis_regs;
static int s3c2440_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
/* 根据params设置IIS控制器 */
/* 参考裸板程序soc/iis.c的iis_init */
int tmp_fs;
int i;
int min = 0xffff;
int pre = 0;
unsigned int fs;
struct clk *clk = clk_get(NULL, 'pclk');
/* 配置GPIO用于IIS */
*gpecon &= ~((3<<0) | (3<<2) | (3<<4) | (3<<6) | (3<<8));
*gpecon |= ((2<<0) | (2<<2) | (2<<4) | (2<<6) | (2<<8));
/* bit[9] : Master clock select, 0-PCLK
* bit[8] : 0 = Master mode
* bit[7:6] : 10 = Transmit mode
* bit[4] : 0-IIS compatible format
* bit[3] : serial bit clock frequency select,1: 32fs,这样可以兼容8bit 和16bit的serial data bit per channel
* bit[2] : 384fs, 确定了MASTER CLOCK之后, fs = MASTER CLOCK/384
* bit[1:0] : Serial bit clock frequency select, 32fs
*/
if (params_format(params) == SNDRV_PCM_FORMAT_S16_LE)
iis_regs->iismod = (2<<6) | (0<<4) | (1<<3) | (1<<2) | (1);
else if (params_format(params) == SNDRV_PCM_FORMAT_S8)
iis_regs->iismod = (2<<6) | (0<<4) | (0<<3) | (1<<2) | (1);
else
return -EINVAL;
/* 参考: s3c2440 datasheet: IIS prescaler(IISPSR) register
* Master clock = PCLK/(n+1)
* fs = Master clock / 384
* fs = PCLK / (n+1) / 384
*/
//根据以上公式,对于app传入的fs采样率,计算出最接近的tmp_fs,以及对应的iispsr
fs = params_rate(params);
for (i = 0; i <= 31; i++) //IISPSR controlA, data value:[0~31]
{
tmp_fs = clk_get_rate(clk)/384/(i+1);
if (ABS(tmp_fs, fs) < min)
{
min = ABS(tmp_fs, fs);
pre = i;
}
}
iis_regs->iispsr = (pre << 5) | (pre);
/*
* bit15 : Transmit FIFO access mode select, 1-DMA
* bit13 : Transmit FIFO, 1-enable
*/
iis_regs->iisfcon = (1<<15) | (1<<13);
/*
* bit[5] : Transmit DMA service request, 1-enable
* bit[1] : IIS prescaler, 1-enable
*/
iis_regs->iiscon = (1<<5) | (1<<1) ;
clk_put(clk);
return 0;
}
static int s3c2440_iis_init(void)
{
gpecon = ioremap(0x56000040, 4);
iis_regs = ioremap(0x55000000, sizeof(struct s3c2440_iis_regs));
platform_device_register(&s3c2440_iis_dev);
platform_driver_register(&s3c2440_iis_drv);
return 0;
}
static void s3c2440_iis_exit(void)
{
platform_device_unregister(&s3c2440_iis_dev);
platform_driver_unregister(&s3c2440_iis_drv);
iounmap(gpecon);
iounmap(iis_regs);
}
3.2.3 实现s3c2440_dma_ops.hw_params 即s3c2440_dma_hw_params
分析内核的dma_hw_params()可知:主要工作涉及到数据的传输,所以我们把s3c2440_dma_hw_params留到下一节“数据传输”再实现。
3.2.4 实现uda1341_dai_ops.hw_params 即uda1341_hw_params
(为了简单, 在uda1341_init_regs里就设置好固定的参数(比如时钟、格式),并且由uda1341_soc_probe一次性调用)
#define UDA134X_RATES SNDRV_PCM_RATE_8000_48000
#define UDA134X_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE)
/* status control */
#define STAT0 (0x00)
#define STAT0_RST (1 << 6)
#define STAT0_SC_MASK (3 << 4)
#define STAT0_SC_512FS (0 << 4)
#define STAT0_SC_384FS (1 << 4)
#define STAT0_SC_256FS (2 << 4)
#define STAT0_IF_MASK (7 << 1)
#define STAT0_IF_I2S (0 << 1)
#define STAT0_IF_LSB16 (1 << 1)
#define STAT0_IF_LSB18 (2 << 1)
#define STAT0_IF_LSB20 (3 << 1)
#define STAT0_IF_MSB (4 << 1)
#define STAT0_IF_LSB16MSB (5 << 1)
#define STAT0_IF_LSB18MSB (6 << 1)
#define STAT0_IF_LSB20MSB (7 << 1)
#define STAT0_DC_FILTER (1 << 0)
#define STAT0_DC_NO_FILTER (0 << 0)
#define STAT1 (0x80)
#define STAT1_DAC_GAIN (1 << 6) /* gain of DAC */
#define STAT1_ADC_GAIN (1 << 5) /* gain of ADC */
#define STAT1_ADC_POL (1 << 4) /* polarity of ADC */
#define STAT1_DAC_POL (1 << 3) /* polarity of DAC */
#define STAT1_DBL_SPD (1 << 2) /* double speed playback */
#define STAT1_ADC_ON (1 << 1) /* ADC powered */
#define STAT1_DAC_ON (1 << 0) /* DAC powered */
/* data0 direct control */
#define DATA0 (0x00)
#define DATA0_VOLUME_MASK (0x3f)
#define DATA0_VOLUME(x) (x)
#define DATA1 (0x40)
#define DATA1_BASS(x) ((x) << 2)
#define DATA1_BASS_MASK (15 << 2)
#define DATA1_TREBLE(x) ((x))
#define DATA1_TREBLE_MASK (3)
#define DATA2 (0x80)
#define DATA2_PEAKAFTER (0x1 << 5)
#define DATA2_DEEMP_NONE (0x0 << 3)
#define DATA2_DEEMP_32KHz (0x1 << 3)
#define DATA2_DEEMP_44KHz (0x2 << 3)
#define DATA2_DEEMP_48KHz (0x3 << 3)
#define DATA2_MUTE (0x1 << 2)
#define DATA2_FILTER_FLAT (0x0 << 0)
#define DATA2_FILTER_MIN (0x1 << 0)
#define DATA2_FILTER_MAX (0x3 << 0)
/* data0 extend control */
#define EXTADDR(n) (0xc0 | (n))
#define EXTDATA(d) (0xe0 | (d))
#define EXT0 0
#define EXT0_CH1_GAIN(x) (x)
#define EXT1 1
#define EXT1_CH2_GAIN(x) (x)
#define EXT2 2
#define EXT2_MIC_GAIN_MASK (7 << 2)
#define EXT2_MIC_GAIN(x) ((x) << 2)
#define EXT2_MIXMODE_DOUBLEDIFF (0)
#define EXT2_MIXMODE_CH1 (1)
#define EXT2_MIXMODE_CH2 (2)
#define EXT2_MIXMODE_MIX (3)
#define EXT4 4
#define EXT4_AGC_ENABLE (1 << 4)
#define EXT4_INPUT_GAIN_MASK (3)
#define EXT4_INPUT_GAIN(x) ((x) & 3)
#define EXT5 5
#define EXT5_INPUT_GAIN(x) ((x) >> 2)
#define EXT6 6
#define EXT6_AGC_CONSTANT_MASK (7 << 2)
#define EXT6_AGC_CONSTANT(x) ((x) << 2)
上一篇:韦东山嵌入式Linux_3期之USB摄像头监控_手机App增加录像功能(二)
下一篇:ALSA声卡_从零编写之框架(基于优龙FS2410开发板,UDA1341声卡)
推荐阅读最新更新时间:2024-11-10 16:07
设计资源 培训 开发板 精华推荐
- 使用 Analog Devices 的 LT1372IN8 的参考设计
- LT8495EFE 450kHz、5V 输出 SEPIC 转换器的典型应用电路
- NCP300HSN27T1 2.7V 窗口电压检测器的典型应用
- TCR6DA1530、200mA、1.5V 和 3.0V 输出电压双路输出 CMOS 低压降稳压器的典型应用
- LT3990EMSE-3.3 2.5V 降压转换器的典型应用
- 使用 Microchip Technology 的 SG337 的参考设计
- #第六届立创电赛#小可同学语音助手
- 【兰州大学】纸张计数显示装置
- NCP301LSN27T1 2.7V双电源欠压监测典型应用
- 极其廉价的插卡MP3(已验证)