能够让STM32更简单的工具

发布者:幸福之路最新更新时间:2024-08-08 来源: elecfans关键字:STM32  工具  CubeMX 手机看文章 扫描二维码
随时随地手机看文章

目 录

1. STM32Cube Ecosystem

2. CubeMX

3. CubeIDE

4. CubeProg

5. CubeIDE进行开发

5.1 STM32CubeIDE Home

5.2 生成工程

5.3 程序下载

6. 结语


1. STM32Cube Ecosystem

记得我在ST刚推出CubeMX的时候就尝试过,那时候自动生成的外设初始化代码都会有一些小错误,现在,随着这套系统的迭代升级,Cube生态也越来越完善,并且使用也越来越方便。ST推出的STM32Cube Ecosystem提供了免费整套的开发软件工具和嵌入式软件包,其中可以从芯片的外设配置,程序开发,程序下载以及系统监视一系列的功能。

STM32Cube EcosystemSTM32 CubeMX 几乎STM32的设备都可以使用这个工具初始化配置代码,这个是基于Java开发的图形化界面配置软件,可以为Cortex-M自动生成需要配置的C代码,还可以为支持Linux系统的Cortex-A内核生成设备树。

STM32 CubeIDE 这是一款ST推出的免费的集成开发环境,基于Eclipse和GNU C/C++ 等开源工具链,可以编译调试代码,并且官方也将STM32 CubeMX集成到IDE中,这样整个软件的配置和开发变得浑然一体,便捷非常。

STM32CubeProgrammer 软件编程工具,支持(JTAG,SWD,UART,USB DFU,I2C,SPI,CAN)等方式对设备和外部存储器进行读写。

STM32CubeMonitor 系列工具。强大的监视工具可帮助开发人员实时微调其应用程序的行为和性能,这个目前还没有尝试,暂且先相信官方的自夸吧。

所以使用以上的ST Cube全家桶进行STM32的软件开发,还是有不少坑要在实践过程中慢慢爬,整体的一个流程基本如下;

开发流程第一步:使用 CubeMX初始化相应的芯片外设功能等等;

第二步:使用CubeIDE进行代码编辑调试等操作,当然,如果你喜欢也可以使用IAR,Keil,或者VSCode,这个完全出自个人喜好和习惯,但是据说CubeIDE里集成了CubeMX,这个难道不香吗? 加上如果想使用 gcc编译器,那也省去了很多配置的麻烦;

第三步:使用CubeProgrammer进行程序烧录,主要是支持的协议多啊,还可以吧,感觉是吹的挺厉害的;

第四步:以后可能会出更多的功能插件,目前感觉不是十分必要。

2. CubeMX

STM32 CubeMX的安装,十分简单,不过下载需要提交邮箱,基本根据系统提示就可以完成,另外,STM32 CubeMX目前自动生成的代码支持官方的HAL库和LL库,像以前笔者常用的标准外设库就已经被ST抛弃了,最新的STM32F7已经不支持标准外设库了。同时,CubeMX初始化生成C代码项目,最终的工程可以符合IAR,Keil MDK和GCC,所以这里相对来说比较方便,不用对着手册撸寄存器了,也不用对着官方标准外设库demo进行移植,真的是哪里不会点哪里。HAL库的封装相对来说好一点,但是代码读起来相对比较冗杂,通用性和移植性好,符合软件工程的设计思想,那么会牺牲一点效率了。LL库会再底层一点,这几个的选择还是看个人喜好和团队的需要了。

3. CubeIDE

在官网下载CubeIDE这个软件并安装,假设你已经成功安装并打开了软件,会看到;

CubeIDE已经集成了CubeMX了,新建STM32工程,step by step即可快速开始了。

4. CubeProg

整体看了一下 STM32 CubeProg 的介绍,其实有点还是可以的,首先这个软件支持多平台如:Windows, Linux, macOS等等,Java 进行开发的有点,这一系列差不多都是用Java开发的,另外可能对st-link的支持比较好,如果使用jlink的话,用个openocd也无妨,但是毕竟是套装,下面简单罗列一下;支持擦除,读写Flash等等操作;

支持Motorola S19, HEX, ELF 和 二进制格式;

ST-LINK的固件升级;

多平台:Windows, Linux, macOS,其实就看好这一点;

5. CubeIDE进行开发

使用STM32CubeIDE快速创建STM32的HAL库工程。

5.1 STM32CubeIDE Home

进入到官网的下载界面,选择符合对应的操作系统和对应的版本,下载安装,

下载界面地址:https://www.st.com/en/development-tools/stm32cubeide.html安装完成之后,打开STM32CubeIDE会直接进入主页,这里开始创建STM32工程或者导入工程,如下图所示;

Read STM32CubeIDE Documentation有大量的官方文档;可以快速入门,包括;安装教程;

用户手册;

5.2 生成工程

设置工程名称和路径之后就基本完成工程的创建了

创建工程在此期间可能会联机下载库文件和相应MCU的外设文件,这里要保持网络畅通,并耐心等待;成功创建工程之后,

在这里插入图片描述可以看到左边是HAL库,右边是CubeMAX的配置界面,至此已经完成了工程的生成了,那么下一步进行进行编译和下载。另外在文件列表中可以看到TEST.ioc文件,这是CubeMAX的配置文件,相当于一些软件的ini文件,CubeMAX主要通过读写该文件将设备的配置保存和加载的软件中,直接用文本编辑器打开可以看到具体的信息如下所示;

#MicroXplorer Configuration settings - do not modify FREERTOS.IPParameters=Tasks01 FREERTOS.Tasks01=defaultTask,0,128,StartDefaultTask,Default,NULL File.Version=6

KeepUserPlacement=false Mcu.Family=STM32F1 Mcu.IP0=FREERTOS Mcu.IP1=NVIC Mcu.IP2

=RCC Mcu.IP3=SYS Mcu.IPNb=4 Mcu.Name=STM32F103Z(C-D-E)Tx Mcu.Package=LQFP144 Mcu.Pin0=VP_FREERTOS_VS_CMSIS_V1 Mcu.Pin1=VP_SYS_VS_ND Mcu.Pin2=VP_SYS_VS_Systick Mcu.PinsNb=

3 Mcu.ThirdPartyNb=0 Mcu.UserConstants= Mcu.UserName=STM32F103ZETx MxCube.Version=5.3.0 MxDb.Version=DB.5.0.30 NVIC.BusFault_IRQn=true:0:

0:false:false:true:false:false:false NVIC.DebugMonitor_IRQn=true:0:0:false:false:true:false:false:false NVIC.HardFault_IRQn=true:0:0:false:false:true:false:false:false NVIC.MemoryManagement_IRQn=true:0:0:false:false:true:false:false:false NVIC.NonMaskableInt_IRQn=true

:0:0:false:false:true:false:false:false NVIC.PendSV_IRQn=true:15:0:false:false:false:true:false:false

NVIC.PriorityGroup=NVIC_PRIORITYGROUP_4 NVIC.SVCall_IRQn=true:0:

0:false:false:false:false:false:false NVIC.SysTick_IRQn=true:15:0:false:false:true:true:false:true NVIC.UsageFault_IRQn=true:0:0:false:false:true:false:false:false PCC.Checker=false PCC.Line=STM32F103 PCC.MCU=STM32F103Z(C-D-E)Tx PCC.PartNumber=STM32F103ZETx

PCC.Seq0=0 PCC.Series=STM32F1 PCC.Temperature=25 PCC.Vdd=3.3 PinOutPanel.RotationAngle=0

ProjectManager.AskForMigrate=true ProjectManager.BackupPrevious=false

ProjectManager.CompilerOptimize=6 ProjectManager.ComputerToolchain=false ProjectManager.CoupleFile=false ProjectManager.CustomerFirmwarePackage=

ProjectManager.DefaultFWLocation=true ProjectManager.DeletePrevious=true

ProjectManager.DeviceId=STM32F103ZETx ProjectManager.FirmwarePackage=STM32Cube FW_F1 V1.8.0

ProjectManager.FreePins=false ProjectManager.HalAssertFull=false ProjectManager.HeapSize=0x200 ProjectManager.KeepUserCode=true ProjectManager.LastFirmware=true ProjectManager.LibraryCopy=1

ProjectManager.MainLocation=Src ProjectManager.NoMain=false ProjectManager.PreviousToolchain= ProjectManager.ProjectBuild=false ProjectManager.ProjectFileName=TEST.ioc

ProjectManager.ProjectName=TEST ProjectManager.StackSize=0x400

ProjectManager.TargetToolchain=STM32CubeIDE ProjectManager.ToolChainLocation= ProjectManager.UnderRoot=true ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false RCC.APB1Freq_Value=8000000 RCC.APB2Freq_Value=8000000 RCC.FamilyName=M

RCC.IPParameters=APB1Freq_Value,APB2Freq_Value,FamilyName,PLLCLKFreq_Value,PLLMCOFreq_Value,

TimSysFreq_Value RCC.PLLCLKFreq_Value=8000000 RCC.PLLMCOFreq_Value=4000000

RCC.TimSysFreq_Value=8000000 VP_FREERTOS_VS_CMSIS_V1.Mode=CMSIS_V1 VP_FREERTOS_VS_CMSIS_V1.Signal=FREERTOS_VS_CMSIS_V1 VP_SYS_VS_ND.Mode=No_Debug

VP_SYS_VS_ND.Signal=SYS_VS_ND VP_SYS_VS_Systick.Mode=SysTick

VP_SYS_VS_Systick.Signal=SYS_VS_Systick board=custom isbadioc=false这个不用太关心,因为可以通过图形化界面去配置,软件会自动修改这个配置文件的。

5.3 程序下载

可以在工具栏直接点击锤子

build快速进行构建,最终会自动生成elf的文件,也就是仿真器可以烧录的文件;然后可以在窗口直接查看Build的信息,包括报错等等,具体如下;

12:52:59 **** Incremental Build of configuration Debug for project TEST **** make -j4 all arm-none-eabi-gcc “。。/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c” -mcpu=cortex-m3 -

std=gnu11 -g3 -DSTM32F103xE -DUSE_HAL_DRIVER -DDEBUG -c -I.。/Inc -

I.。/Drivers/CMSIS/Device/ST/STM32F1xx/Include -I.。/Drivers/CMSIS/Include -

I.。/Drivers/STM32F1xx_HAL_Driver/Inc/Legacy -I.。/Drivers/STM32F1xx_HAL_Driver/Inc -O0 -ffunction-sections -fdata-sections -Wall -fstack-usage -MMD -MP -MF“Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.d” -MT

“Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.o” --specs=nano.specs -mfloat-abi=soft -mthumb -o “Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.o” 。。。 Finished building

target: TEST.elf arm-none-eabi-objdump -h -S TEST.elf 》 “TEST.list” arm-none-eabi-size TEST.elf text data bss dec hex filename 3860 20 8228 12108 2f4c TEST.elf Finished building: default.size.stdout

点击工具栏的虫子图标debug进行调试;

工具栏在菜单栏Run选项中找到Debug Configuratons,如下图所示,配置调试用的仿真器和接口方式,最后点击Debug即可将TEST.elf下载到target中。

调试器配置成功开始调试之后,如下图所示;

开始调试

结语

对于Cube进行了简单的学习和介绍,目前还有不少坑要爬,建议看一下HAL的封装,有必要LL也可以看看,基本上还是符合CMSIS那套标准。另外关于开发环境,如果需要使用CubeIDE进行开发,它已经集成了CubeMAX,则无需另外下载了,直接一站式服务搞定,如果只需要生成初始化代码,那么CubeMAX还是有必要单独装一下的。


关键字:STM32  工具  CubeMX 引用地址:能够让STM32更简单的工具

上一篇:ch32v307和stm32的区别
下一篇:基于STM32和机智云智能门锁的实现

推荐阅读最新更新时间:2024-11-11 20:09

STM32精确延迟1us和1ms的函数
延迟1us: 1 /***************************************************** 2 * 函 数 名 : delay_us 3 * 函数功能 : 延时函数,延时us 4 * 输 入 : i 5 * 输 出 : 无 6 *******************************************************************************/ 7 void delay_us(u32 i) 8 { 9 u32 temp; 10 SysTick-LOAD=
[单片机]
stm32单片机如何将数组中的转换成一个数值或者数据
if(UartHandle- Instance == USART3) //stm32的串口中断 { gizPutData((uint8_t *)&mudbusRxBuffer, 1); rx_buf =mudbusRxBuffer; HAL_UART_Receive_IT(&huart3, (uint8_t *)&mudbusRxBuffer, 1);//这里用的是hal库,开启下一次接收中断 if(rx_buf == 'A') //A在这里我设置为结束符,假如从串口发送10A, { for(int i=0;i num;i++) { x=x*10+(int)rx
[单片机]
STM32 —— 多路ADC采集
#ifndef _ADC_H_ #define _ADC_H_ #include type.h #include debug.h void ADCInit(void); uint16_t ADCGetData(uint8_t channel); uint16_t ADCGetAverage(uint8_t channel, uint8_t times); #ifndef CONFIG_CAN void adc_test(void); #endif #endif /* _ADC_H_ */ // input1~5 -- 模拟量IO口; input6~10 -- 普通IO口用 #define ADC_CHANNEL
[单片机]
STM32 nvic 解释
朋友们,如果你需要在STM32上移植RTOS,那么首先必须深入理解它的中断系统。 什么是NVIC?即嵌套向量中断控制器(Nested Vectored Interrupt Controller)。STM32的中有一个强大而方便的NVIC,它是属于Cortex内核的器件,不可屏蔽中断 (NMI)和外部中断都由它来处理,而SYSTICK不是由 NVIC来控制的。 特性: ● 60个可屏蔽中断通道(不包含16个Cortex™-M3的中断线); ● 16个可编程的优先等级(使用了4位中断优先级); ● 低延迟的异常和中断处理; ● 电源管理控制; ● 系统控制寄存器的实现; 1.中断优先级分组 STM32(Cortex-M3)
[单片机]
<font color='red'>STM32</font> nvic 解释
用C++开发STM32程序
我们知道KEIL是支持C++的,网上一搜索也能找到一些使用C++的方法,无非是在Keil里的options- C/C++- Misc Controls里添加—cpp,如果要支持c++11,还需要指定—cpp11。事实上这样的C++并不是完整意义的上的C++,本人测试过,有好多C++的新功能都是没有办法实现的。这里需要注明的是,在KEIL5.18a以前的版本(包括5.18a)所支持的Arm Compiler只有ARM Compiler 5以及更低的版本,C++11支持不完整,而对C++11有完整支持就必须要使用Arm Compiler 6 即 AC6。 为了使用对C++11有完整支持的Arm Compiler 6(AC6),今天所使
[单片机]
用C++开发<font color='red'>STM32</font>程序
STM32串行通信原理
一、通信接口背景知识 1,处理器与外部设备通信的两种方式: A.并行通信 传输原理:数据各个位同时传输。(用多个口同时传输多位数据) 优点:速度快 缺点:占用引脚资源多 B.串行通信 传输原理:数据按位顺序传输。 优点:占用引脚资源少 缺点:速度相对较慢 2,串行通信: 按照数据传送方向,分为: (1),单工(a): 数据传输只支持数据在一个方向上传输 (2),半双工(b): 允许数据在两个方向上传输,但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信; (3),全双工(c): 允许数据同时在两个方向上传输,因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的
[单片机]
<font color='red'>STM32</font>串行通信原理
STM32之SPI的迭代
回顾前面用SPI2写的一个W25Q64的程序 void SPI2_Init(void) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //PB13/14/15复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIOB GPIO_SetBits(GPIOB,GPIO_Pi
[单片机]
<font color='red'>STM32</font>之SPI的迭代
从零使用env工具生成gd32f450工程
开发环境 硬件:gd32f450zkt6开发板 软件:rtthread源码。 下载rtthread源码,进入文件夹bsp/gd32/arm/gd32450z-eval下,使用env工具,将程序打包。 1.如何将工程进行单独打包 方法1 指令:scons —dist —target=mdk5 结果如图: 在当前文件夹中会看到多出来了dist文件夹,进入dist文件夹可以看到提取的工程。 打开工程,编译,编译通过。 方法2: 指令:scons —dist和scons —target=mdk5指令。 先使用scons —dist生成dist文件夹,提取出工程,进入dist文件夹,再使用scons —target=mdk5
[单片机]
从零使用env<font color='red'>工具</font>生成gd32f450工程
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved