STM32系统和内核复位
内核复位:它会使STM32内核(Cortex-M)进行复位,而不会影响其外设,如GPIO、TIM、USART、SPI等这些寄存器的复位。
系统复位:这个复位会使整个芯片的所有电路都进行复位,系统默认的函数接口NVIC_SystemReset就是系统复位(位于core_cm*.h)。
1.NVIC_CoreReset内核复位
CM3 允许由软件触发复位序列,用于特殊的调试或维护目的。在CM3中,有两种方法可以执行自我复位。第一种方法,是通过置位 NVIC 中应用程序中断与复位控制寄存器(AIRCR)的VECTRESET 位(位偏移:0)。
这种复位的作用范围覆盖了整个CM3处理器中,除了调试逻辑之外的所有角落,但是它不会影响到 CM3 处理器外部的任何电路,所以单片机上的各片上外设和其它电路都不受影响。
C语言版函数:
void NVIC_CoreReset(void){__DSB(); //置位VECTRESET SCB->AIRCR = ((0x5FA << SCB_AIRCR_VECTKEY_Pos) | (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) |SCB_AIRCR_VECTRESET_Msk); __DSB(); while(1);}
汇编版函数:
__asm void NVIC_CoreReset_a(void){ LDR R0, =0xE000ED0C LDR R1, =0x05FA0001 //置位VECTRESET STR R1, [R0] deadloop_Core B deadloop_Core}
内核主要注意:
SCB_AIRCR_VECTRESET_Msk
LDR R1, =0x05FA0001
它是和系统复位唯一的区别。
2.NVIC_SysReset系统复位
系统复位是置位同一个寄存器中的 SYSRESETREQ 位。这种复位则会波及整个芯片上的电路:它会使 CM3 处理器把送往系统复位发生器的请求线置为有效。但是系统复位发生器不是CM3的一部分,而是由芯片厂商实现,因此不同的芯片对此复位的响应也不同。因此,读者需要认真参阅该芯片规格书,明白当发生片内复位时,各外设和功能模块都会回到什么样的初始状态,或者有哪些功能模块不受影响(比如, STM32系列的芯片有后备存储区,该区就被特殊对待)。
大多数情况下,复位发生器在响应 SYSRESETREQ 时,它也会同时把 CM3 处理器的系统复位信号(SYSRESETn)置为有效。通常, SYSRESETREQ 不应复位调试逻辑。
这里有一个要注意的问题:从 SYSRESETREQ 被置为有效,到复位发生器执行复位命令,往往会有一个延时。在此延时期间,处理器仍然可以响应中断请求。但我们的本意往往是要让此次执行到此为止,不要再做任何其它事情了。所以,最好在发出复位请求前,先把FAULTMASK置位。因此,我在提供源代码中有这么一句:__set_FAULTMASK(1);,也就是置位FAULTMASK。
C语言版函数:
voidNVIC_SysReset(void){ __DSB(); SCB->AIRCR = ((0x5FA << SCB_AIRCR_VECTKEY_Pos) | (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) | SCB_AIRCR_SYSRESETREQ_Msk); __DSB(); while(1);}
汇编版函数:
__asm void NVIC_SysReset_a(void){ LDR R0, =0xE000ED0C LDR R1, =0x05FA0004 STR R1, [R0] deadloop_Sys B deadloop_Sys}
内核复位与系统源代码和相近,差异在于SYSRESETREQ和SYSRESETREQ这两位。
关于复位的知识,在实际项目中应用的比较多。
关键字:stm32 软复位 内核复位 系统复位
引用地址:
stm32软复位 内核复位和系统复位
推荐阅读最新更新时间:2024-11-12 17:28
基于STM32单片机的雷管电子保险装置设计
雷管使用中如果引爆系统屏蔽不够完善,使雷管中流过泄漏电流和电容电流达到一定的数值和作用时间,电流转化成足够的热能达到雷管炸药点燃温度(约180℃)时即可引爆,电雷管耐静电压为(1~3)×104V,超过(1~3)×104V 的静电压,从而引爆电雷管,造成爆破材料发生意外爆炸事故。本课题是在参阅了国内外关于雷管安全保险发展技术资料的基础上进行的国内雷管防护措施开发和研制的一次有益的尝试和探索,简要介绍了STM32F103RBT6 的主要功能和性能,完成了系统整体设计。 1.STM32F103RBT6简介 STM32F103RBT6 是一种高性能32 位微控制器(MICrocontrollerUnit),是意法半导体公司
[单片机]
STM32的中断机制 stm32中断方式有几种
STM32的中断机制stm32中断方式有几种 中断机制在单片机中是很重要的环节,中断代码默认地从上往下执行,遇到特定条件或特定语句,将按照指定的程序跳转。而STM32单片机的中断是有两层控制器分别控制的,若采用中断机制,必须同时配置内核和芯片。 在STM32单片机中执行中断机制主要有三个函数,分别是: 1.配置NVIC_Config()函数 2.配置EXTI_Config()函数 3.自行编写中断服务函数 NVIC是嵌套向量中断控制器,主要控制整个单片机芯片中断相关的功能,跟内核紧密耦合。配置NVIC_Config()函数是为单片机提供选择中断源的优先级及打开中断通道,主要由配置NVIC初始化结构体NVIC_InitStr
[单片机]
STM32开发笔记37: 485总线的收发切换时间
单片机型号:STM32L053R8T6 使用STM32进行485程序设计时,采用中断进行发数,这就意味着在发数的同时还需考虑收发切换时间。先看下程序: while (1) { Target.HAL.CommonUart.SetWorkingMode(2); Target.HAL.CommonUart.SendData(Target.HAL.CommonUart.Buffer, 1); Target.Delayms(4); Target.HAL.CommonUart.SetWorkingMode(1); Target.HAL.WorkingLed.Turn(); Target.Delayms(100);
[单片机]
STM32的时钟简介和配置方法
STM32中使用任何一个外设都必须打开相应的时钟。在STM32中有5个时钟源可供用户选择: 1.HSI高速内部时钟,RC震荡器,频率为8MHz。 2.HSE高速外部时钟,右英/陶瓷谐振器,或着外部时钟源,4MHz-16MHz. 3.LSI内部低速时钟,RC震荡器频率为40Hz。 4.LSE外部低速时钟,接频率为32.768KHz的石英晶体。 5.PLL锁相环频输出,时钟源可选为HIS/2、HSE或HSE/2。倍频可选2-16倍,但其输出频率最大不能超过72MHz。 系统时钟SYSCLK,它是供STM32中绝大部分器件工作的时钟源,系统时钟可选择为PLL输出、HSI或者HSE。系统时钟的做大频率为72MHz,它通过AHB分频器分频后
[单片机]
STM32外部中断具体解释
一、基本概念 ARM Coetex-M3内核共支持256个中断,当中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。STM32眼下支持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使用中断优先级设置8bit中的高4位。 STM32可支持68个中断通道,已经固定分配给对应的外部设备,每一个中断通道都具备自己的中断优先级控制字节PRI_n(8位,可是STM32中仅仅使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器。 4bit的中断优先级能够分成2组,从高位看,前面定义的是抢占式优
[单片机]
STM32四行【跳转程序】引申出来的几条重要知识点
1写在前面 上一篇文章《 STM32 IAP应用编程几个要点 》讲述的内容很多朋友都了解过,也都使用过ST官网提供的代码。但使用过的人有许多都没有深入了解,仅仅只是把代码下载到板卡中跑了一下而已(因为代码完全可以使用)。所以,很少有人研究其中细节的问题。 先看一下上图中四行跳转代码,接下来将围绕这四行代码拓展相关的内容。 2STM32是如何实现程序跳转的? 上图四行代码中有几个定义没有贴出来,下面一并贴出来: #define ApplicationAddress 0x8003000 typedef void (*pFunction)(void); pFunction Jump_To_Application; uint
[单片机]
【STM32】STM32驱动 LCD12864程序代码(串行方式)
引言: 这里我们只讲解接线和代码实现,具体的原理在上一篇博客中已经讲解,如果想了解具体原理可以查看上一篇博客 《STM32 LCD12864 串行通信模式 (从原理让你理解)》 下方代码的实现也是基于上一篇的讲解顺序来的 设备: STM32F407ZGT6 引脚接线: VSS——GND VDD——VCC(5V or 3.3V) V0 亮度调节 不接 CS ——接VCC,持续高电平,一直选通。 SID ——接PE1 SCLK ——接PE0 PSB——接GND 串行模式 或者飞线与1脚相连 BLA——VCC(5V or 3.3V) 或者飞线与2脚相连 BLK——
[单片机]
STM32系列第14篇--TFTLCD驱动原理
ALINETEK2.8寸 TFTLCD模块特点 240*320分辨率 16位真彩显示(65536色) 自带电阻触摸屏 自带背光电路 注意:模块是3.3V供电的,不支持5V电压的MCU,如果是5VMCU,必须在信号线串接120R电阻使用。 ALINETEK2.8寸 TFTLCD接口说明(16位80并口) LCD_CS:LCD片选信号 LCD_WR:LCD写信号 LCD_RD:LCD读信号 DB :16位双向数据线。 LCD_RST:硬复位LCD信号 LCD_RS:命令/数据标志(0:命令,1:数据) BL_CTR:背光控制信号 T_MISO/T_MOSI/T_PEN/T_CS/T_CLK,触摸屏接口信号
[单片机]