STM32单片机程序是如何编译,运行的?

发布者:EtherealLove最新更新时间:2024-08-26 来源: elecfans关键字:STM32  单片机程序  编译  运行 手机看文章 扫描二维码
随时随地手机看文章

不知道大家有没有疑惑,为什么软件能控制硬件? 本文分析STM32单片机到底是如何软硬件结合的,分析单片机程序如何编译,运行。


一、软硬件结合  

初学者,通常有一个困惑,就是为什么软件能控制硬件?就像当年的51,为什么只要写P1=0X55,就可以在IO口输出高低电平?要理清这个问题,先要认识一个概念:地址空间。


寻址空间

什么是地址空间呢?所谓的地址空间,就是PC指针的寻址范围,因此也叫寻址空间。

大家应该都知道,我们的电脑有32位系统和64位系统之分,为什么呢?因为32位系统,PC指针就是一个32位的二进制数,也就是0xffffffff,范围只有4G寻址空间。现在内存越来越大,4G根本不够,所以需要扩展,为了能访问超出4G范围的内存,就有了64位系统。STM32是多少位的?是32位的,因此PC指针也是32位,寻址空间也就是4G。

我们来看看STM32的寻址空间是怎么样的。在数据手册《STM32F407_数据手册.pdf》中有一个图,这个图,就是STM32的寻址空间分配。所有的芯片,都会有这个图,名字基本上都是叫Memory map,用一个新芯片,就先看这个图。

7b45018a-b086-11ee-8b88-92fbcf53809c.png

最左边,8个block,每个block 512M,总共就是4G,也就是芯片的寻址空间。


block 0 里面有一段叫做FLASH,也就是内部FLASH,我们的程序就是下载到这个地方,起始地址是0X800 0000,大家注意,这个只有1M空间。现在STM32已经有2M flash的芯片了,超出1M的FLASH放在哪里呢?请自行查看对应的芯片手册。


3 在block 1 内,有两段SRAM,总共128K,这个空间,也就是我们前面说的内存,存放程序使用的变量。如果需要,也可以把程序放到SRAM中运行。407不是有196K吗?


其实407有196K内存,但是有64k并不是普通的SRAM,而是放在block 0 内的CCM。这两段区域不连续,而且,CCM只能内核使用,外设不能使用,例如DMA就不能用CCM内存,否则就死机。


block 2,是Peripherals,也就是外设空间。我们看右边,主要就是APB1/APB2、AHB1/AHB2,什么东西呢?回头再说。


block 3、block4、block5,是FSMC的空间,FSMC可以外扩SRAM,NAND FALSH,LCD等外设。


好的,我们分析了寻址空间,我们回过头看看,软件是如何控制硬件的。对于这个疑惑,也可以看此文:代码是如何控制硬件的?在IO口输出的例程中,我们配置IO口是调用库函数,我们看看库函数是怎么做的。 例如:


GPIO_SetBits(GPIOG, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2| GPIO_Pin_3);

这个函数其实就是对一个变量赋值,对GPIOx这个结构体的成员BSRRL赋值。

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

 /* Check the parameters */

 assert_param(IS_GPIO_ALL_PERIPH(GPIOx));

 assert_param(IS_GPIO_PIN(GPIO_Pin));



 GPIOx->BSRRL = GPIO_Pin;

}


assert_param:这个是断言,用于判断输入参数是否符合要求GPIOx是一个输入参数,是一个GPIO_TypeDef结构体指针,所以,要用->获取其成员


GPIOx是我们传入的参数GPIOG,具体是啥?在stm32f4xx.h中有定义。


#define GPIOG               ((GPIO_TypeDef *) GPIOG_BASE)

GPIOG_BASE同样在文件中有定义,如下:

#define GPIOG_BASE           (AHB1PERIPH_BASE + 0x1800)

AHB1PERIPH_BASE,AHB1地址,有点眉目了吧?在进一步看看

/*!< Peripheral memory map */

#define APB1PERIPH_BASE       PERIPH_BASE

#define APB2PERIPH_BASE       (PERIPH_BASE + 0x00010000)

#define AHB1PERIPH_BASE       (PERIPH_BASE + 0x00020000)

#define AHB2PERIPH_BASE       (PERIPH_BASE + 0x10000000)

再找找PERIPH_BASE的定义

#define PERIPH_BASE           ((uint32_t)0x40000000)

到这里,我们可以看出,操作IO口G,其实就是操作0X40000000+0X1800这个地址上的一个结构体里面的成员。说白了,就是操作了这个地方的寄存器。实质跟我们操作普通变量一样,就像下面的两句代码,区别就是变量i是SRAM空间地址,0X40000000+0X1800是外设空间地址。

u32 i;

i = 0x55aa55aa;


这个外设空间地址的寄存器是IO口硬件的一部分。关于如下图STM32的GPIO文章推荐:STM32中GPIO工作原理详解。如下图,左边的输出数据寄存器,就是我们操作的寄存器(内存、变量),它的地址就是0X40000000+0X1800+0x14.

7b62af50-b086-11ee-8b88-92fbcf53809c.png

控制其他外设也类似,就是将数据写到外设寄存器上,跟操作内存一样,就可控制外设了。

 

寄存器,其实应该是内存的统称,外设寄存器应该叫做特殊寄存器。慢慢的,所有人都把外设的叫做寄存器,其他的统称内存或RAM。寄存器为什么能控制硬件外设呢?因为,初略的说,一个寄存器的一个BIT,就是一个开关,开就是1,关就是0。通过这个电子开关控制电路,从而控制外设硬件。


二、纯软件-包罗万象的小程序 

我们已经完成了串口和IO口的控制,但是我们仅仅知道了怎么用,对其他一无所知。程序怎么跑的?关于程序是怎么在单片机运行的,也可以看此视频:动画演示单片机是如何跑程序的。代码到底放在那里?内存又是怎么保存的?下面,我们通过一个简单的程序,学习嵌入式软件的基本要素。


分析启动代码

函数从哪里开始运行?

每个芯片都有复位功能,复位后,芯片的PC指针(一个寄存器,指示程序运行位置,对于多级流水线的芯片,PC可能跟真正执行的指令位置不一致,这里暂且认为一致)会复位到固定值,一般是0x00000000,在STM32中,复位到0X08000004。因此复位后运行的第一条代码就是0X08000004。前面我们不是拷贝了一个启动代码文件到工程吗?startup_stm32f40_41xxx.s,这个汇编文件为什么叫启动代码?因为里面的汇编程序,就是复位之后执行的程序。在文件中,有一段数据表,称为中断向量,里面保存了各个中断的执行地址。复位,也是一个中断。 芯片复位时,芯片从中断表中将Reset_Handler这个值(函数指针)加载到PC指针,芯片就会执行Reset_Handler函数了。(一个函数入口就是一个指针)


; Vector Table Mapped to Address 0 at Reset

                AREA    RESET, DATA, READONLY

                EXPORT  __Vectors

                EXPORT  __Vectors_End

                EXPORT  __Vectors_Size



__Vectors       DCD     __initial_sp               ; Top of Stack

                DCD     Reset_Handler              ; Reset Handler

                DCD     NMI_Handler                ; NMI Handler

                DCD     HardFault_Handler          ; Hard Fault Handler

                DCD     MemManage_Handler          ; MPU Fault Handler

                DCD     BusFault_Handler           ; Bus Fault Handler

                DCD     UsageFault_Handler         ; Usage Fault Handler


Reset_Handler函数,先执行SystemInit函数,这个函数在标准库内,主要是初始芯片时钟。然后跳到__main执行,__main函数是什么函数? 是我们在main.c中定义的main函数吗?后面我们再说这个问题。

7b81ed48-b086-11ee-8b88-92fbcf53809c.png

芯片是怎么知道开始就执行启动代码的呢?或者说,我们如何把这个启动代码放到复位的位置?这就牵涉到一个一般情况下不关注的文件wujique.sct,这个文件在wujiqueprjObjects目录下,通常把这个文件叫做分散加载文件,编译工具在链接时,根据这个文件放置各个代码段和变量。 在MDK软件Options菜单Linker下有关于这个菜单的设置。

7b8ef6aa-b086-11ee-8b88-92fbcf53809c.png

把Use Memory Layout from Target Dialog前面的勾去掉,之前不可设置的框都可以设置了。点击Edit进行编辑。

7b9dd008-b086-11ee-8b88-92fbcf53809c.png

在代码编辑框出现了分散加载文件内容,当前文件只有基本的内容。

 

 

其实这个文件功能很强大,通过修改这个文件可以配置程序的很多功能,例如:1 指定FLASH跟RAM的大小于起始位置,当我们把程序分成BOOT、CORE、APP,甚至进行驱动分离的时候,就可以用上了。2 指定函数与变量的位置,例如把函数加载到RAM中运行。

7bb8893e-b086-11ee-8b88-92fbcf53809c.png

从这个基本的分散加载文件我们可以看出:

第6行 ER_IROM1 0x08000000 0x00080000定义了ER_IROM1,也就是我们说的内部FLASH,从0x08000000开始,大小0x00080000。

第7行.o (RESET, +First)从0x08000000开始,先放置一个.o文件, 并且用(RESET, +First)指定RESET块优先放置,RESET块是什么?请查看启动代码,中断向量就是一个AREA,名字叫RESET,属于READONLY。这样编译后,RESET块将放在0x08000000位置,也就是说,中断向量就放在这个地方。DCD是分配空间,4字节,第一个就是__initial_sp,第二个就是Reset_Handler函数指针。也就是说,最后编译后的程序,将Reset_Handler这个函数的指针(地址),放在0x800000+4的地方。所以芯片在复位的时候,就能找到复位函数Reset_Handler。

第8行 *(InRoot$$Sections)什么鬼?GOOGLE啊!回头再说。

第9行 .ANY (+RO)意思就是其他的所有RO,顺序往后放。就是说,其他代码,跟着启动代码后面。

第11行 RW_IRAM1 0x20000000 0x00020000定义了RAM大小。

第12行 .ANY (+RW +ZI)所有的RW ZI,全部放到RAM里面。RW,ZI,也就是变量,这一行指定了变量保存到什么地址。

分析用户代码

到此,基本启动过程已经分析完。下一步开始分析用户代码,就从main函数开始。 1 程序跳转到main函数后:RCC_GetClocksFreq获取RCC时钟频率;SysTick_Config配置SysTick,在这里打开了SysTick中断,10毫秒一次。Delay(5);延时50毫秒。


int main(void)

{

  GPIO_InitTypeDef GPIO_InitStructure;



 /*!< At this stage the microcontroller clock setting is already configured,

       this is done through SystemInit() function which is called from startup

       files before to branch to application main.

       To reconfigure the default setting of SystemInit() function,

       refer to system_stm32f4xx.c file */



  /* SysTick end of count event each 10ms */

  RCC_GetClocksFreq(&RCC_Clocks);

  SysTick_Config(RCC_Clocks.HCLK_Frequency / 100);



  /* Add your application code here */

  /* Insert 50 ms delay */

  Delay(5);

2 初始化IO就不说了,进入while(1),也就是一个死循环,嵌入式程序,都是一个死循环,否则就跑飞了。

/*初始化LED IO口*/

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);



GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2| GPIO_Pin_3;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;



GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;

GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;

GPIO_Init(GPIOG, &GPIO_InitStructure);    



/* Infinite loop */

mcu_uart_open(3);

while (1)

{

  GPIO_ResetBits(GPIOG, GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3);

  Delay(100);

  GPIO_SetBits(GPIOG, GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3);

  Delay(100);

  mcu_uart_test();



  TestFun(TestTmp2);

}

3 在while(1)中调用TestFun函数,这个函数使用两个全局变量,两个局部变量。

/* Private functions ---------------------------------------------------------*/

u32 TestTmp1 = 5;//全局变量,初始化为5

u32 TestTmp2;//全局变量,未初始化



const u32 TestTmp3[10] = {6,7,8,9,10,11,12,13,12,13};



u8 TestFun(u32 x)//函数,带一个参数,并返回一个u8值

{

 u8 test_tmp1 = 4;//局部变量,初始化

 u8 test_tmp2;//局部变量,未初始化



 static u8 test_tmp3 = 0;//静态局部变量



 test_tmp3++;



 test_tmp2 = x;



 if(test_tmp2> TestTmp1)

  test_tmp1 = 10;

 else

  test_tmp1 = 5;



 TestTmp2 +=TestTmp3[test_tmp1];



 return test_tmp1;

}

然后程序就一直在main函数的while循环里面执行。中断呢?对,还有中断。中断中断,就是中断正常的程序执行流程。相关文章:STM32中断系统。我们查看Delay函数,uwTimingDelay不等于0就死等?谁会将uwTimingDelay改为0?

/**

  * @brief  Inserts a delay time.

  * @param  nTime: specifies the delay time length, in milliseconds.

  * @retval None

  */

void Delay(__IO uint32_t nTime)

{

  uwTimingDelay = nTime;



  while(uwTimingDelay != 0);

}

搜索uwTimingDelay变量,函数TimingDelay_Decrement会将变量一直减到0。

/**

  * @brief  Decrements the TimingDelay variable.

  * @param  None

  * @retval None

  */

void TimingDelay_Decrement(void)

{

  if (uwTimingDelay != 0x00)

  {

    uwTimingDelay--;

  }

}

这个函数在哪里执行?经查找,在SysTick_Handler函数中运行。谁用这个函数?

/**

  * @brief  This function handles SysTick Handler.

  * @param  None

  * @retval None

  */

void SysTick_Handler(void)

{

  TimingDelay_Decrement();

}

经查找,在中断向量表中有这个函数,也即是说这个函数指针保存在中断向量表内。当发生中断时,就会执行这个函数。当然,在进出中断会有保存和恢复现场的操作。这个主要涉及到汇编,暂时不进行分析了。有兴趣自己研究研究。通常,现在我们开发程序不用关心上下文切换了。

__Vectors       DCD     __initial_sp               ; Top of Stack

                DCD     Reset_Handler              ; Reset Handler

                DCD     NMI_Handler                ; NMI Handler

                DCD     HardFault_Handler          ; Hard Fault Handler

                DCD     MemManage_Handler          ; MPU Fault Handler

                DCD     BusFault_Handler           ; Bus Fault Handler

                DCD     UsageFault_Handler         ; Usage Fault Handler

                DCD     0                          ; Reserved

[1] [2]
关键字:STM32  单片机程序  编译  运行 引用地址:STM32单片机程序是如何编译,运行的?

上一篇:STM32官方手册的使用方法举例
下一篇:STM32速成笔记(6)—定时器

推荐阅读最新更新时间:2024-11-12 13:35

正点原子STM32 USB读卡器代码分析
USB读卡器的基本原理就是向主机提供SD读写功能,并不需要加入文件系统功能。 USB设备的实现步骤: 1、 初始化系统时钟,设置USB时钟 2、 配置USB中断,选择通道,设置优先级,使能中断 3、 配置GPIO 4、 USB的初始化,对描述符、设备的端点接口等的初始化 5、 FLASH的初始化 sd_size=(long long)SD_GetSectorCount()*512; //得到SD卡容量,字节. Mass_Memory_Size =sd_size%4294967296; //当SD卡容量超过4G的时候,需要用到两个u32来表示 Mass_Memory_Size
[单片机]
STM32通过ADC1读取光敏电阻的值转换光照强度
【1】光敏电阻的原理 光敏电阻是一种半导体元件,它的电阻值会随着照射在其表面的光线强度的变化而发生改变。当光线越强,光敏电阻的电阻值就越小;当光线较弱或没有光照射时,电阻值就会增大。 光敏电阻广泛应用于光电控制、光度计、自动调节亮度灯等领域。 常见的光敏电阻有硫化镉(CdS)光敏电阻和硒化铟(InSb)光敏电阻等。 与其他传感器相比,光敏电阻具有以下优点: 灵敏度高:对光线强度的变化非常敏感。 响应速度快:一般情况下响应时间只需几毫秒。 易于集成:小巧轻便,易于安装和集成到各种设备中。 价格低廉:相对于其他光电传感器,光敏电阻的价格较为低廉。 但是,光敏电阻也有其缺点。由于光敏电阻本身的特性,其输出不太稳定,精度
[单片机]
STM32库函数详解----(外部中断/事件控制器 EXTI)
1.void EXTI_DeInit (void) 函数解释:将EXTI外设寄存器重置为默注释。RCC_APB2PeriphResetCmd参数中没有EXTI外设的的宏,该外设重置采取的是直接向寄存器赋默认值的操作。 例子:EXTI_DeInit ( ); 2.void EXTI_Init (EXTI_InitTypeDef*EXTI_InitStruct) 函数解释:根据EXTI_InitStruct结构体中所配置的参数来初始化外设EXTI寄存器。结构体中模式成员设置了被使能线路是事件请求还是中断请求。 例子:EXTI_Init (&EXTI_InitStruct); EXTI_Line: EXTI_
[单片机]
建立STM32的工程步骤(版本1)
建立STM32的工程步骤(版本1):
[单片机]
建立<font color='red'>STM32</font>的工程步骤(版本1)
STM32笔记(九)---串口通信
一、 串口通信协议简介 1-1 概念 物理层:规定通讯系统中具有机械、电子功能部分的特性,确保原始数据在物理媒体的传输。其实就是硬件部分。 协议层:协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。其实就是软件部分。 简单来说物理层规定我们用嘴巴还是用肢体来交流,协议层则规定我们用中文还是英文来交流。 1-2 常用标准 ①.RS232标准 RS232标准串口通讯结构图 RS232标准串口主要用于工业设备直接通信 电平转换芯片一般有MAX3232,SP3232 DB9 标准的公头及母头接法 RS-232 与 TTL 电平区别(232趋向高容错) ②.USB转串口(USB2TTL) USB转串口
[单片机]
<font color='red'>STM32</font>笔记(九)---串口通信
STM32中如何配置片内外设使用的IO端口
STM32的输入输出管脚有下面8种可能的配置: 1. 浮空输入 2. 带上拉输入 3. 带下拉输入 4. 模拟输入 5. 开漏输出 6. 推挽输出 7. 复用功能的推挽输出 8. 复用功能的开漏输出 GPIO_Mode的几种方式: GPIO_Mode_AIN模拟输入 GPIO_Mode_IN_FLOATING浮空输入 GPIO_Mode_IPD下拉输入 GPIO_Mode_IPU上拉输入 GPIO_Mode_Out_OD开漏输出 GPIO_Mode_Out_PP推挽输出 GPIO_Mode_AF_OD复用开漏输出 GPIO_Mode_AF_PP复用推挽输出 对应到外设的输入输出功能有下述三种情况: 一、外设对应的管脚为输出
[单片机]
STM32开发笔记62: 使用MicroLIB
单片机型号:STM32F407VGT6 microLIB 是缺省 C 库的备选库,它旨在与需要装入到极少量内存中的深层嵌入式应用程序配合使用。LwIP中使用了microLIB,如果不勾选microLIB选项,则程序不能够正常运行,其主要原因在于LwIP使用了microLIB提供的标准输入和输出函数。本文对microLIB做详细介绍。 1、microLIB介绍 Microlib is an alternative library to the default C library. It is intended for use with deeply embedded applications that must fit
[单片机]
<font color='red'>STM32</font>开发笔记62: 使用MicroLIB
STM32开漏,推挽的知识
有关推挽输出、开漏输出、复用开漏输出、复用推挽输出以及上拉输入、下拉输入、浮空输入、模拟输入区别 有关推挽输出、开漏输出、复用开漏输出、复用推挽输出 以及上拉输入、下拉输入、浮空输入、模拟输入的区别 最近在看数据手册的时候,发现在Cortex-M3里,对于GPIO的配置种类有8种之多: (1)GPIO_Mode_AIN模拟输入 (2)GPIO_Mode_IN_FLOATING浮空输入 (3)GPIO_Mode_IPD下拉输入 (4)GPIO_Mode_IPU上拉输入 (5)GPIO_Mode_Out_OD开漏输出 (6)GPIO_Mode_Out_PP推挽输出 (7)GPIO_Mode_AF_OD复用开漏输出 (8)GPIO_M
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved