STM32G474 逐波限流保护的实现

发布者:Xiaoxue666最新更新时间:2024-08-27 来源: elecfans关键字:电源设计 手机看文章 扫描二维码
随时随地手机看文章

前言

在电源设计中经常会使用逐波限流保护来保证电流不超过限定的最大值,若在短时内多次触发逐波限流保护则强制封锁 PWM 输出,让系统进入故障保护状态,在这个过程中需要对逐波限流触发次数进行计数,以此来判断是否进入故障保护,本文针对该功能,基于 STM32G474 高精度定时器,介绍如何实现逐波限流保护以及保护次数计数。


逐波限流原理介绍

所谓逐波限流指在电源工作过程中,对电感电流或是功率管导通电流进行实时监测,一旦超出设定范围,则在该 PWM 周期内立即关闭相关的 PWM 驱动,直到下个 PWM 周期再自动使能PWM 驱动,若电流信号一直超限,则一直封锁 PWM,直到电流恢复正常的下一个新的 PWM 周期后,才能重新使能 PWM 输出。工作过程示意图如下图所示,OCP 表示过流保护,高电平表示电流超限。

wKgaomUD6U2AVe0OAACm0X7z3rA441.png

STM32G474 逐波限流保护的实现

STM32G474 的高精度定时器除了能产生高精度的 PWM 波外,还包含了外部事件管理器,能对多达 10 个外部事件进行处理。可以设置外部事件的触发源、触发方式(沿触发或是电平触发)、相应方式(同步或是异步)以及事件的滤波方式。外部事件的一个最重要的作用就是用来对输出的PWM 进行控制,触发 PWM 的 Set 与 Reset 动作。

wKgaomUD6U6AXcZKAAGFUcdCwSw690.png

在触发源的选择上,每个外部事件可以从 4 个源中进行选择:

• 外部 pin 脚输入

•内部比较器输出

• 其他定时器触发信号(如 TIM1/2/3_TRGO)

• ADC 看门狗事件(ADCx_ADC1/2/3)

对应逐波限流功能,可以选择外部 pin 脚输入或是内部比较器输出,推荐的方式为内部比较器输出。外部电流采样信号直接输入到片上比较器(COMPx_INP),比较器的输出结果作为外部事件触发源。

wKgZomUD6U-ANSMlAACd9FewYqI773.png

基于以上的介绍,利用 CubeMx 工具进行相应的配置来说明整个功能的实现过程,以高精度定时器中的 Timer A 为例,主要介绍外部事件与逐波限流保护的配置,其他的配置不再赘述。外部事件的配置如下,触发源为内部比较器 2 的输出,高电平有效。

wKgaomUD6VGAeD_JAAB2EBgBIlo248.png

为了使用内部比较器,必须对内部对应的比较器进行配置,一般选择 DAC 的输出作为比较器的参考,所以还需要对 DAC 进行配置。比较器的配置如下,设置回差,减少比较器输出抖动。

wKgZomUD6VKANNHOAACivLAZuMQ856.png

DAC 的配置如下(如果选择 VREFINT 或是COMPx_INM 则无需配置 DAC):

wKgaomUD6VSAcgkgAADsRmQeEiM282.png

PWM 输出的配置如下,PWM 的 Reset 除了比较事件外,添加外部事件源。

wKgaomUD6VWAS0vvAAEIbmFNuX8145.png

基于以上的配置,在生成的工程代码中添加必要的外设启动函数即可,如下:

wKgZomUD6VeAZDU7AAEKI5ORw10969.png

通过示波器查看波形,黄色表示输出 PWM 驱动;绿色内部比较器输出信号,输出为高时表示限流保护,触发封波,输出为低则 PWM 可正常输出。

wKgZomUD6ViADbXQAADQ794FA-k981.png

逐波限流触发次数计数的实现

很多应用中不但需要实现逐波限流,还需要对某段时间内触发逐波限流的次数进行计数,以此来判断系统是否出现短路或是过载,然后决定系统是否进入永久保护状态,除非软件再次使能输出。

在高精度定时器中,外部事件不但可以用来触发 PWM 动作,它还可以被定时器内部的捕获单元捕获,所以可以通过读取捕获标志位来判定外部事件是否发生并进行计数;另外如本文采用了内部比较器的输出作为外部事件的触发源,可以通过直接读取比较器的比较中断标识或是输出状态的方式来判定外部事件是否发生并进行计数。

下面以读取捕获标识为例说明如何实现该功能,该方法更加通用。在 CubeMx 中配置高精度定时器的 Capture 功能,如下:

wKgaomUD6VqAJf4LAABFZSZoojA791.png

在软件中添加如下的代码,假如判断周期为 1 秒,本文给出伪代码的形式,具体代码需根据实际的应用进行修改。

wKgaomUD6VuAXRi7AAEi1EE2O9U953.png

小结

本文对逐波限流的原理进行了简单介绍,给出了如何利用 STM32G474 系列 MCU 的高精度定时器中的相关功能实现逐波限流以及逐波限流计数的方案。


关键字:电源设计 引用地址:STM32G474 逐波限流保护的实现

上一篇:基于STM32F4和RT-Thread通用BootLoader使用经验
下一篇:STM32串口中断及DMA接收常见的几个问题

推荐阅读最新更新时间:2024-11-12 20:08

浅谈可穿戴物联网设备的一些电源设计挑战
蜂窝收发器的性能取决于电源轨的可靠性和稳定性。因此,必须做出的设计选择,以确保充足的功率裕量、适当的接地平面尺寸和足够低的纹波。当设计被压缩到可穿戴产品中时,这些选择会变得更加复杂,因为可穿戴产品不仅需要电池供电,还要符合监管标准。 本文讨论了可穿戴物联网设备会遇到的一些电源设计挑战,并提出了一种使用市售元器件解决这些挑战的设计拓扑。全文都会讨论关键的设计取舍,并提供一些建议的缓解方法。本文的最终目标是提出一种稳健的电源设计拓扑,为设计人员提供一个能在可穿戴物联网设备的各种限制条件下工作的高效解决方案。 定义挑战:可靠性和稳定性 在本文中,可靠性定义为,电源系统提供处于无线电收发器(在本例中为蜂窝收发器)工作范围内的电压轨的能
[嵌入式]
浅谈可穿戴物联网设备的一些<font color='red'>电源设计</font>挑战
一种基于PWM软开关模式的开关电源设计方案
  主电路分析   这款软 开关电源 采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCS PWM 控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。        图1 1.2kw
[电源管理]
一种基于PWM软开关模式的开关<font color='red'>电源设计</font>方案
一种浪涌抑制模块在开关电源设计中的应用方案
目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1 所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。 图2 上电后输入浪涌电流 浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。为避免这
[电源管理]
一种浪涌抑制模块在开关<font color='red'>电源设计</font>中的应用方案
高速ADC电源设计方案详细解析
  当今许多应用要求高速采样模数转换器(ADC)具有12位或以上的分辨率,以便用户能够进行更精确的系统测量。遗憾的是,更高的分辨率也意味着系统对噪声更加敏感。系统分辨率每提高一位,例如从12位提高到13位,系统对噪声的敏感度就会提高一倍。因此,对于ADC设计,设计人员必须考虑一个常常被遗忘的噪声源——系统电源。ADC是敏感器件,为了实现数据手册所述的最佳额定性能,应当同等看待模拟、时钟和电源等所有输入端。噪声来源众多,形式多样,噪声辐射会影响性能。   当今电子业界的时髦概念是新设计在降低成本的同时还要“绿色环保”。具体到便携式应用,它要求降低功耗、简化散热管理、最大化电源效率并延长电池使用时间。然而,大多数ADC
[电源管理]
高速ADC<font color='red'>电源设计</font>方案详细解析
双管正激模块电源设计 有MAX5051更精彩
高功率密度、高效率以及小型集成化已成为当今 模块电源 技术发展的驱动力。那么,双管正激电路正是实现这些要求的实用电路之一,该电路广泛应用在中、高功率的电源设计中。本文从双管 正激 电路的工作原理到实际应用的优点都给予详细讲解,同时又介绍了应用于双管正激电路的PWM控制器——MAX5051的功能和具体实验结果。 双管正激变换器的原理图与波形如图1所示。双管正激变换器的工作可以分为三个过程:能量转移阶段、 变压器 磁复位阶段和死区阶段。在能量转移阶段,原边的两个开关都导通,能量从输入端向输出端转移。在变压器磁复位阶段,原边的两个 二极管 都导通,使变压器绕组承受反相输入电压,从而实现变压器磁复位。当变压器完全复位后,变换器工作在死区阶
[电源管理]
双管正激模块<font color='red'>电源设计</font> 有MAX5051更精彩
LED日光灯电源设计有关发热烧MOS管五大关键技术点分析
   1、芯片发热   本次内容主要针对内置电源调制器的高压驱动芯片。假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热。驱动芯片的最大电流来自于驱动功率MOS管的消耗,简单的计算公式为I=cvf(考虑充电的电阻效益,实际I=2cvf,其中c为功率MOS管的cgs电容,v为功率管导通时的gate电压,所以为了降低芯片的功耗,必须想办法降低c、v和f.如果c、v和f不能改变,那么请想办法将芯片的功耗分到芯片外的器件,注意不要引入额外的功耗。再简单一点,就是考虑更好的散热吧。    2、功率管发热   关于这个问题,也见到过有人在电源网论坛发过贴。功率管的功耗分成两部分,开关损耗和导
[电源管理]
基于TOPSwitch及PI Expert的单端反激式开关电源设计
   开关电源 以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压 电源 有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。   传统的单端反激电源一般由PWM控制芯片(如UC3842)和功率开关管(频率较高时一般使用MOSFET)组成,PWM芯片控制环路设计复杂,容易造成系统工作不稳定,功率开关管有时需要外加驱动电路。另外,反激 变压器 的设计也是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决
[电源管理]
基于TOPSwitch及PI Expert的单端反激式开关<font color='red'>电源设计</font>
基于FSDM0565R的反激式开关电源设计
  引言   目前,开关电源以其高性能,高效率(75%,现在单片集成开关电源效率早已达到90%以上),这对解决能源问题起到推波助澜的作用,很多节能电器的电源供给早已被开关电源取代;本文介绍了一种基于 开关电源 芯片FSDM0565R 的三相输入、多输出反激式开关稳压电源。分析了FSDM0565R 的特性和工作原理,并给出了它的设计电路图、实际参数的计算及器件的选取,最后给出了该电源模块的实测波形及测试技术指标。实验结果表明,利用该芯片设计的开关电源具有效率高、体积小、电路简单、输入电压变化范围宽、纹波小等特点。同时解决了工业现场三相输入的问题,具有实际的推广价值。          1.FSDM0565R 的主要性能特点和工作原理
[电源管理]
基于FSDM0565R的反激式开关<font color='red'>电源设计</font>
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved