一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①HSI是高速内部时钟,RC振荡器,频率为8MHz。
②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③LSI是低速内部时钟,RC振荡器,频率为40kHz。
④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:
①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能;第2种:分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面)节省2个外部电阻。
三、用HSE时钟,程序设置时钟参数流程:01、将RCC寄存器重新设置为默认值RCC_DeInit;02、打开外部高速时钟晶振HSERCC_HSEConfig(RCC_HSE_ON);03、等待外部高速时钟晶振工作HSEStartUpStatus=RCC_WaitForHSEStartUp();04、设置AHB时钟RCC_HCLKConfig;05、设置高速AHB时钟RCC_PCLK2Config;06、设置低速速AHB时钟RCC_PCLK1Config;07、设置PLLRCC_PLLConfig;08、打开PLLRCC_PLLCmd(ENABLE);09、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET)10、设置系统时钟RCC_SYSCLKConfig;11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource()!=0x08)12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()
四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)
/*******************************************************************************
*FunctionName:RCC_Configuration
*Description:RCC配置(使用外部8MHz晶振)
*Input:无
*Output:无
*Return:无
*******************************************************************************/
voidRCC_Configuration(void)
{
/*将外设RCC寄存器重设为缺省值*/
RCC_DeInit();
/*设置外部高速晶振(HSE)*/
RCC_HSEConfig(RCC_HSE_ON);//RCC_HSE_ON——HSE晶振打开(ON)
/*等待HSE起振*/
HSEStartUpStatus=RCC_WaitForHSEStartUp();
if(HSEStartUpStatus==SUCCESS)//SUCCESS:HSE晶振稳定且就绪
{
/*设置AHB时钟(HCLK)*/
RCC_HCLKConfig(RCC_SYSCLK_Div1);//RCC_SYSCLK_Div1——AHB时钟=系统时钟
/*设置高速AHB时钟(PCLK2)*/
RCC_PCLK2Config(RCC_HCLK_Div1);//RCC_HCLK_Div1——APB2时钟=HCLK
/*设置低速AHB时钟(PCLK1)*/
RCC_PCLK1Config(RCC_HCLK_Div2);//RCC_HCLK_Div2——APB1时钟=HCLK/2
/*设置FLASH存储器延时时钟周期数*/
FLASH_SetLatency(FLASH_Latency_2);//FLASH_Latency_22延时周期
/*选择FLASH预取指缓存的模式*/
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);//预取指缓存使能
/*设置PLL时钟源及倍频系数*/
RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);
//PLL的输入时钟=HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x9
/*使能PLL*/
RCC_PLLCmd(ENABLE);
/*检查指定的RCC标志位(PLL准备好标志)设置与否*/
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET)
{
}
/*设置系统时钟(SYSCLK)*/
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟
/*PLL返回用作系统时钟的时钟源*/
while(RCC_GetSYSCLKSource()!=0x08)//0x08:PLL作为系统时钟
{
}
}
/*使能或者失能APB2外设时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|
RCC_APB2Periph_GPIOC,ENABLE);
//RCC_APB2Periph_GPIOAGPIOA时钟
//RCC_APB2Periph_GPIOBGPIOB时钟
//RCC_APB2Periph_GPIOCGPIOC时钟
//RCC_APB2Periph_GPIODGPIOD时钟
}
五、时钟频率
STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。
在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。
文件开头就有一个这样的定义://#define SYSCLK_FREQ_HSEHSE_Value//#define SYSCLK_FREQ_20MHz 20000000//#define SYSCLK_FREQ_36MHz 36000000//#define SYSCLK_FREQ_48MHz 48000000//#define SYSCLK_FREQ_56MHz 56000000#define SYSCLK_FREQ_72MHz 72000000
ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:#define SYSCLK_FREQ_72MHz 72000000也就是103系列能跑到的最大值72M
然后这个 C文件继续往下看#elif defined SYSCLK_FREQ_72MHzconst uint32_t SystemFrequency= SYSCLK_FREQ_72MHz;const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;
这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了:#elif defined SYSCLK_FREQ_72MHzstatic void SetSysClockTo72(void);
这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了
所以设置系统时钟的流程就是:首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:
第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000第二个:调用SystemInit()
上一篇:STM32 BSRR BRR ODR寄存器详情解析
下一篇:STM32F407 GPIO口输入配置配置步骤
推荐阅读最新更新时间:2024-11-12 12:10
设计资源 培训 开发板 精华推荐
- 具有输入隔离开关的 LTC3110HFE 自主备份和再充电应用的典型应用电路
- ZR431GTA 可调精密齐纳并联稳压器的典型应用
- 使用 Richtek Technology Corporation 的 RT7247C 的参考设计
- NCP3337MN500GEVB,NCP3337 评估板,用于 PCMCIA 卡的 5V DC 至 DC 单输出电源
- smart controller 控制器
- TEA1721BDB1065: TEA1721 Universal Mains White Goods Flyback SMPS Demo Board
- SP7650EB,用于分布式电源系统的 3.3V DC 到 DC 单路输出电源的评估板
- 10kW 3-phase 3-level T-type inverter reference design for solar string inverter
- Dreamweaver 4N:用于实时制作独特音乐的四音符音序器(PCB、原理图、源码等)
- powerbank_ip5306