STM32 ADC

发布者:Xingfu6666最新更新时间:2024-10-14 来源: cnblogs关键字:STM32  ADC 手机看文章 扫描二维码
随时随地手机看文章

STM32 ADC 简介

STM32 拥有 1~3 个 ADC (STM32F101/102 系列只有 1 个 ADC) ,这些 ADC 可以独立使用,也可以使用双重模式(提高采样率)。STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行。 ADC 的结果可以左对齐或右对齐方式存储在 16 位数据寄存器中。   模拟看门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。 

STM32F103 系列最少都拥有 2 个 ADC,我们选择的 STM32F103ZET 包含有 3 个 ADC。STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us (在 ADCCLK=14M,采样周期为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。

STM32 将 ADC 的转换分为 2 个通道组:规则通道组和注入通道组。规则通道相当于你正常运行的程序,而注入通道呢,就相当于中断。在你程序正常执行的时候,中断是可以打断你的执行的。同这个类似,注入通道的转换可以打断规则通道的转换,   在注入通道被转换完成之后,规则通道才得以继续转换。

STM32 的单次转换模式下的相关设置,使用库函数的函数来设定使用 ADC1 的通道 1 进行 AD 转换。这里需要说明一下,使用到的库函数分布在 stm32f10x_adc.c 文件和 stm32f10x_adc.h 文件中。其详细设置步骤:

1)开启 PA 口时钟和 ADC1 时钟,设置 PA1 为模拟输入。

STM32F103ZET6 的 ADC 通道 1 在 PA1 上,所以,我们先要使能 PORTA 的时钟和 ADC1时钟,然后设置 PA1 为模拟输入。使能 GPIOA 和 ADC 时钟用 RCC_APB2PeriphClockCmd 函数,设置 PA1 的输入方式,使用 GPIO_Init 函数即可。

2)复位 ADC1,同时设置 ADC1 分频因子。

开启 ADC1 时钟之后,我们要复位 ADC1, 将 ADC1  的全部寄存器重设为缺省值之后我们就可以通过 RCC_CFGR 设置 ADC1 的分频因子。分频因子要确保 ADC1 的时钟(ADCCLK)不要超过 14Mhz。  这个我们设置分频因子位 6,时钟为 72/6=12MHz,库函数的实现方法是:

RCC_ADCCLKConfig(RCC_PCLK2_Div6);

ADC 时钟复位的方法是:

ADC_DeInit(ADC1);

3)初始化 ADC1 参数,设置 ADC1 的工作模式以及规则序列的相关信息。

在设置完分频因子之后,我们就可以开始 ADC1 的模式配置了,设置单次转换模式、触发方式选择、数据对齐方式等都在这一步实现。 同时,我们还要设置 ADC1 规则序列的相关信息,我们这里只有一个通道,并且是单次转换的,所以设置规则序列中通道数为 1。这些在库函数中是通过函数 ADC_Init 实现的,下面我们看看其定义:

void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);

从函数定义可以看出,第一个参数是指定 ADC 号。这里我们来看看第二个参数,跟其他外设初始化一样,同样是通过设置结构体成员变量的值来设定参数。

typedef struct

{

uint32_t ADC_Mode; //设置 ADC 的模式  独立模式,注入同步模式

FunctionalState ADC_ScanConvMode;   //设置是否开启扫描模式

FunctionalState ADC_ContinuousConvMode; //设置是否开启连续转换模式

uint32_t ADC_ExternalTrigConv;    //设置启动规则转换组转换的外部事件   

uint32_t ADC_DataAlign;   //设置 ADC 数据对齐方式是左对齐还是右对齐             

uint8_t ADC_NbrOfChannel; //设置规则序列的长度 

}ADC_InitTypeDef; 

初始化范例:

  ADC_InitTypeDef ADC_InitStructure;

  ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;  //ADC 工作模式:独立模式

  ADC_InitStructure.ADC_ScanConvMode = DISABLE;  //AD 单通道模式

  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;  //AD 单次转换模式

  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;   //转换由软件而不是外部触发启动

  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;  //ADC 数据右对齐

  ADC_InitStructure.ADC_NbrOfChannel = 1;  //顺序进行规则转换的 ADC 通道的数目 1

ADC_Init(ADC1, &ADC_InitStructure);  //根据指定的参数初始化外设 ADCx  

5)使能 ADC 并校准。

在设置完了以上信息后,我们就使能 AD 转换器,执行复位校准和 AD 校准,注意这两步是必须的!不校准将导致结果很不准确。 

使能指定的 ADC 的方法是:

ADC_Cmd(ADC1, ENABLE);  //使能指定的 ADC1

执行复位校准的方法是:

ADC_ResetCalibration(ADC1);

执行 ADC 校准的方法是:

ADC_StartCalibration(ADC1);    //开始指定 ADC1 的校准状态

记住,每次进行校准之后要等待校准结束。 这里是通过获取校准状态来判断是否校准是否结束。下面我们一一列出复位校准和 AD 校准的等待结束方法:

while(ADC_GetResetCalibrationStatus(ADC1));  //等待复位校准结束

while(ADC_GetCalibrationStatus(ADC1));    //等待校 AD 准结束

6)读取 ADC 值。

在上面的校准完成之后, ADC 就算准备好了。接下来我们要做的就是设置规则序列 1 里面的通道,采样顺序,以及通道的采样周期,然后启动 ADC 转换。在转换结束后,读取 ADC 转换结果值就是了。这里设置规则序列通道以及采样周期的函数是:

void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel,uint8_t Rank, uint8_t ADC_SampleTime);

我们这里是规则序列中的第 1 个转换,同时采样周期为 239.5,所以设置为:

ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 );

软件开启 ADC 转换的方法是:

ADC_SoftwareStartConvCmd(ADC1, ENABLE);//使能指定的 ADC1 的软件转换

启动功能开启转换之后,就可以获取转换 ADC 转换结果数据,方法是:

ADC_GetConversionValue(ADC1);

同时在 AD 转换中,我们还要根据状态寄存器的标志位来获取 AD 转换的各个状态信息。库函数获取 AD 转换的状态信息的函数是:

FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)

比如我们要判断 ADC1d 的转换是否结束,方法是:

while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束

通过以上几个步骤的设置,我们就能正常的使用 STM32 的 ADC1 来执行 AD 转换操作了。

点击(此处)折叠或打开

  1. /** 初始化ADC

  2.  * 这里我们仅以规则通道为例

  3.  * 我们默认将开启通道0~3    

  4.  */

  5. void Adc_Init(void)

  6. {

  7.     GPIO_InitTypeDef GPIO_InitStructure;

  8.     ADC_InitTypeDef ADC_InitStructure;

  9.     

  10.     RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1    , ENABLE );     //使能ADC1通道时钟

  11.     RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M

  12.     

  13.     //PA1 作为模拟通道输入引脚

  14.     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;

  15.     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;        //模拟输入引脚

  16.     GPIO_Init(GPIOA, &GPIO_InitStructure);    

  17.     

  18.     ADC_DeInit(ADC1); //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值

  19.     

  20.     ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;    //ADC工作模式:ADC1和ADC2工作在独立模式

  21.     ADC_InitStructure.ADC_ScanConvMode = DISABLE;    //模数转换工作在单通道模式

  22.     ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;    //模数转换工作在单次转换模式

  23.     ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;    //转换由软件而不是外部触发启动

  24.     ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;    //ADC数据右对齐

  25.     ADC_InitStructure.ADC_NbrOfChannel = 1;    //顺序进行规则转换的ADC通道的数目

  26.     ADC_Init(ADC1, &ADC_InitStructure);    //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器

  27.     

  28.     ADC_Cmd(ADC1, ENABLE);    //使能指定的ADC1    

  29.     ADC_ResetCalibration(ADC1);    //使能复位校准

  30.     

  31.     while(ADC_GetResetCalibrationStatus(ADC1));    //等待复位校准结束

  32.     

  33.     ADC_StartCalibration(ADC1);     //开启AD校准

  34.  

  35.     while(ADC_GetCalibrationStatus(ADC1));     //等待校准结束

  36.     

  37. }


  38.             

  39. //获得ADC值

  40. //ch:通道值 0~3

  41. u16 Get_Adc(u8 ch)

  42. {

  43.       //设置指定ADC的规则组通道,一个序列,采样时间

  44.     ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 );    //ADC1,ADC通道,采样时间为239.5周期                 

  45.   

  46.     ADC_SoftwareStartConvCmd(ADC1, ENABLE);        //使能指定的ADC1的软件转换启动功能    

  47.     

  48.     while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束


  49.     return ADC_GetConversionValue(ADC1);    //返回最近一次ADC1规则组的转换结果

  50. }




  51. u16 Get_Adc_Average(u8 ch,u8 times)

  52. {

  53.     u32 temp_val=0;

  54.     u8 t;

  55.     for(t=0;t

  56.     {

  57.         temp_val+=Get_Adc(ch);

  58.         delay_ms(5);

  59.     }

  60.     return temp_val/times;

  61. }



关键字:STM32  ADC 引用地址:STM32 ADC

上一篇:STM32用IAR调试出现Error[Pe020]: identifier "FILE" is undefined 解决方法
下一篇:STM32 DMA

推荐阅读最新更新时间:2024-11-17 09:28

STM32中断源位置
在...\CMSIS\Device\ST\STM32F10x中的stm32f10x.h, 然后在结构体IRQn_Type找到对应单片机型号的代码片段。 比如STM32F103C8T6属于STM32F10X_MD, 那对应的中断源为: 再比如STM32F103ZET6对应的是STM32F10X_HD
[单片机]
<font color='red'>STM32</font>中断源位置
GP2Y10驱动含PM2.5和AQI(STM32
一、前期准备 单片机:STM32F103ZET6 开发环境:MDK5.14 库函数:标准库V3.5 GP2Y10模块:淘宝有售 二、实验效果 三、驱动原理 主要就是采集AD电压,对应转换公式做相关的转换。 需要完整工程或者有问题的请加QQ:1002521871,验证:呵呵。 四、驱动代码 gp2y10.h #ifndef __GP2Y10_H__ #define __GP2Y10_H__ #include stm32f10x.h #include gpio.h #include delay.h #include uart.h #define GP2Y10_CONTROL PAout(0) #defin
[单片机]
GP2Y10驱动含PM2.5和AQI(<font color='red'>STM32</font>)
stm32_中断优先级详解
我自己依据此图理解,应用思维导图画了一张方便理解:(如果看不清可通过ctrl+鼠标滑轮 放大看;) 前提条件1:组别优先顺序(第0组优先级最强,第4组优先级最弱):NVIC_PriorityGroup_0 NVIC_PriorityGroup_1 NVIC_PriorityGroup_2 NVIC_PriorityGroup_3 NVIC_PriorityGroup_4 这里说的组优先级第一很容易误解 其实一个程序只设置一遍组 先整理好所有中断个数再看用那个组 前提条件2:“组”优先级别 “抢”占优先级别 “副”优先级别 前提条件3:同一组优先级别中,不同的抢占级别之间,其中一抢占级别正在做事,另外抢占级别不能打断他;
[单片机]
stm32_中断优先级详解
STM32几种操作的寄存器版本和库函数版本对比
1、USART1接收完成标志检测 USART1- SR&0X40 == 0 USART_GetFlagStatus(USART1,USART_FLAG_TC)==RESET 2、USART1发送数据 USART1- DR = (u8) ch; USART_SendData(USART1,(u8)ch);
[单片机]
STM32串口协议概念及结构体初始化详解+串口点灯+串口收发
一、串口通信协议简介 物理层:规定通讯系统中具有机械、电子功能部分的特性,确保原始数据在物理媒体的传输。其实就是硬件部分。 协议层:协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。其实就是软件部分。 1.RS232标准 2.USB转串口 3.原生的串口到串口 二、初始化结构体解 1.USART初始化结构体 2.同步时钟初始化结构体 3.编程时需要用到的固件库函数 三、串口点灯代码实现 1.USART .C文件 #include bsp_usart.h void USART_Config(void) { GPIO_InitTypeDef GPIO_InitStructure;
[单片机]
<font color='red'>STM32</font>串口协议概念及结构体初始化详解+串口点灯+串口收发
AD1871型模数转换器的应用
1 引言   AD1871是目前市场上动态范围、采样速率和采样精度等指标都很突出数据的一款24位ADC,它的推出为设计高速、高精度数据采集系统提供了一种较好的解决方案。由于其输出为串行输出,当其和MCU直接相连时,会使采样系统的采样速率大大降低。笔者采用现场可编程门阵列(FPGA)设计了ADl871和MCU之间的接口,由FPGA完成对ADl871的控制,并将其输出的串行数据在FPGA的内部变为并行数据,并行后的数据以8位或12位为一组发给MCU。由于FPGA的实际传输速率可以满足和ADl871的传输速率要求,故上述“瓶颈”得以解决。   2 接口设计   2.1 时钟设计   图1示出A/D转换器的输入时钟设计,MD转换
[模拟电子]
AD1871型<font color='red'>模数转换器</font>的应用
STM32的DAC加TIMER应用演示
现在有如下图所示的这样一个需求,希望使用 STM32 芯片 来实现。 横轴表示时间,纵轴表示电压【3.3v为限】,不同时刻的电压输出不一样、持续时间也不尽相同。 此问题源于某高校STM32学习时的习题,这里拿出来一起交流探讨下。方法不是唯一的,尤其基于不同STM32系列。这里尽量使用通用、常规的方法,算是抛砖引玉。 显然,我们可以考虑使用STM32的 DAC 加 TI MER以及片内其它资源加以实现。 对于这个实现我们可以分两种方式完成,每一种方式同时也体现不同难度。 我们可以考虑下面两种应用情形: 第一种方式: MCU 除了做这一件事外,还做点别的,比方做按键响应、 ADC 采样这些,整体上没有太复杂的功能和要求。【中断
[单片机]
<font color='red'>STM32</font>的DAC加TIMER应用演示
【GD32 MCU 入门教程】GD32 MCU 常见外设介绍 (6) ADC 模块介绍
6.1.ADC 基础知识 12 位逐次逼近式模数转换器模块(ADC),可以采样来自于外部输入通道、内部输入通道的模拟信号,采样转换后,转换结果可以按照最低有效位对齐或最高有效位对齐的方式保存在相应的数据寄存器中。 6.2.GD32 ADC 外设原理 GD32 ADC 主要特性 ◼ 高性能: – ADC采样分辨率: 12位、 10位、 8位、或者6位分辨率; – 前置校准功能; – 可编程采样时间; – 数据存储模式:最高有效位对齐和最低有效位对齐; – 支持规则数据转换的DMA请求。 ◼ 模拟输入通道: – 16个外部模拟输入通道; – 1个内部温度传感器输入通道(VSENSE); – 1个内部参考电压输入通道(VREFINT
[单片机]
【GD32 MCU 入门教程】GD32 MCU 常见外设介绍 (6) <font color='red'>ADC</font> 模块介绍
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved