STM32-2-GPIO

发布者:快乐的舞蹈最新更新时间:2024-10-16 来源: cnblogs关键字:STM32  GPIO  配置种类 手机看文章 扫描二维码
随时随地手机看文章

最近在看数据手册的时候,发现在Cortex-M3里,对于GPIO的配置种类有8种之多:
(1)GPIO_Mode_AIN 模拟输入 
(2)GPIO_Mode_IN_FLOATING 浮空输入
(3)GPIO_Mode_IPD 下拉输入 
(4)GPIO_Mode_IPU 上拉输入 
(5)GPIO_Mode_Out_OD 开漏输出
(6)GPIO_Mode_Out_PP 推挽输出
(7)GPIO_Mode_AF_OD 复用开漏输出 
(8)GPIO_Mode_AF_PP 复用推挽输出
对于刚入门的新手,我想这几个概念是必须得搞清楚的,平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但一直未曾对这些做过归纳。因此,在这里做一个总结:
推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。
详细理解:

如图所示,推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经VT3拉出。这样一来,输出高低电平时,VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。

开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).
开漏形式的电路有以下几个特点:
1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。
2. 一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)
3. OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。
4. 可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。补充:什么是“线与”?:
在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上. 因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑.
其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。
关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:


该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。
浮空输入:对于浮空输入,一直没找到很权威的解释,只好从以下图中去理解了


由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。
上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。
复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)
最后总结下使用情况:
在STM32中选用IO模式
(1) 浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
(2)带上拉输入_IPU——IO内部上拉电阻输入
(3)带下拉输入_IPD—— IO内部下拉电阻输入
(4) 模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电
(5)开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能
(6)推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
(7)复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL,SDA)
(8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)


GPIO库函数:  
函数名        描述  GPIO_DeInit     将外设GPIOx寄存器重设为缺省值  
GPIO_AFIODeInit  将复用功能(重映射事件控制和EXTI设置)重设为缺省值
GPIO_Init    根据GPIO_InitStruct中指定的参数初始化外设GPIOx寄存器
GPIO_StructInit    把GPIO_InitStruct中的每一个参数按缺省值填入
GPIO_ReadInputDataBit  读取指定端口管脚的输入  
GPIO_ReadInputData   读取指定的GPIO端口输入  
GPIO_ReadOutputDataBit  读取指定端口管脚的输出  
GPIO_ReadOutputData   读取指定的GPIO端口输出  
GPIO_SetBits     设置指定的数据端口位  
GPIO_ResetBits    清除指定的数据端口位  
GPIO_WriteBit     设置或者清除指定的数据端口位  
GPIO_Write     向指定GPIO数据端口写入数据  
GPIO_PinLockConfig   锁定GPIO管脚设置寄存器  
GPIO_EventOutputConfig  选择GPIO管脚用作事件输出  
GPIO_EventOutputCmd   使能或者失能事件输出  
GPIO_PinRemapConfig   改变指定管脚的映射  
GPIO_EXTILineConfig   选择GPIO管脚用作外部中断线路


关键字:STM32  GPIO  配置种类 引用地址:STM32-2-GPIO

上一篇:STM32中GPIO的8种工作模式
下一篇:STM32-1-STM32时钟系统

推荐阅读最新更新时间:2024-11-17 04:33

stm32---SPI与内部flash
STM32F1 的闪存(Flash)模块由:主存储器、信息块和闪存存储器接口寄 存器等 3 部分组成。 主存储器:存放代码和数据常数 , (BOOT0,BOOT1)= (0,0) 信息块:分为两个小部分,其中启动程序代码存储stm的自带的启动程序用于串口下载(1,0)。其中用户选择字节,则一般用于配置写保护、读保护等功能。 闪存存储器接口寄存器:该部分用于控制闪存读写等,是整个闪存模块的 控制机构。 同样,STM32 的 FLASH 在编程的时候,也必须要求其写入地址的 FLASH 是 被擦除了的(也就是其值必须是 0XFFFF),否则无法写入,在 FLASH_SR 寄存 器的 PGERR 位将得到一个警告。 flash配
[单片机]
LPC2131的GPIO输出
功能: 依次点亮板子上的八个LED,并循环显示,每循环显示一次,蜂鸣器蜂鸣一次。 原理图: 程序清单: /****************************************Copyright (c)************************************************** * **--------------File Info------------------------------------------------------------------------------- ** File name: main.c ** Last modified Date:
[单片机]
LPC2131的<font color='red'>GPIO</font>输出
Stm32RS232串口通信——中断接收发送数据
main.c配置: /* *说明: *PA0:KEY1;PA1:KEY2; *PA2:LED1;PA3:LED2; *PA9:USART1_TX;PA10:USART1_RX */ #include stm32f10x.h #include stm32f10x_rcc.h #include stm32f10x_gpio.h #include stm32f10x_usart.h #include stm32f10x_exti.h #include system_stm32f10x.h #include misc.h void RCC_Configurati
[单片机]
STM32单片机对红外接收系统的设计
4.23.1概述 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛。 4.23.1.1红外接收头工作原理 红外接收头一般是接收、放大、解调一体头,一般红外信号经接收头解调后,数据“0”和“1”的区别通常体现在高低电平的时间长短或信号周期上,单片机解码时,通常将接收头输出脚连接到单片机的外部中断,结合定时器判断外
[单片机]
<font color='red'>STM32</font>单片机对红外接收系统的设计
STM32入门开发:编写XPT2046电阻触摸屏驱动(模拟SPI)
一、环境介绍 单片机采用: STM32F103ZET6 编程软件: keil5 编程语言: C语言 编程风格: 寄存器开发. 目标芯片: XPT2046---标准SPI接口时序 二、XPT2046芯片介绍 2.1 功能 XPT2046是一颗12位的ADC芯片,可以当做普通的ADC芯片使用,但是一般都是用在电阻触摸屏上,方便定位触摸屏坐标。 图1: XPT2046内部原理图 图2:电阻触摸屏---引出的4条线就接在XPT2046的YNXNYPXP上 (XPT2046支持笔中断输出--低电平有效,这个引脚可以配置到单片机的中断脚上,或者轮询判断这个引脚状态,判断触摸屏是否已经按下) 可以单独买一个触
[单片机]
<font color='red'>STM32</font>入门开发:编写XPT2046电阻触摸屏驱动(模拟SPI)
STM32 ST-LINK Utility解决错误
使用ST-LINK V2下载程序时,出现以下错误,并且连接线无出错 解决方法: Target --- Settings--- Mode更改为Connect Under Reset
[单片机]
<font color='red'>STM32</font> ST-LINK Utility解决错误
STM32的延时程序,us级延时
据前人说,做嵌入式系统最忌讳的就是程序等延时和浪费timer,所以平时写程序很努力的在避免毫秒级的延时,而且一般的rtos是需要个时基的,所以尽量做到只用systick来完成系统时基,毫秒,微妙的延时。 但做18B20等的通信还是需要一些us级别的延时的,网上看了比较多的延时实现方法,均不是很实用,比如正点原子用systick单纯的做毫秒或微妙延时,虽不用中断,但把一个systick就浪费了。实在找不到现成的,就只能自己写个了。首先是用systick来维护一个每次中断都自增的全局变量,作为ms延时和系统其他时间的时基。其次,借助systick的寄存器写了如下一个us级的延时程序 void Delay_us(uint32_t
[单片机]
STM32 SPI使用
1、SPI使用原理 以数据交换实现数据传输,第一个跳变沿实现数据输出,第二个跳变沿实现采样。如下图 2、GPIO的配置 GPIO_InitTypeDef GPIO_InitStructure; //配置SPI2管脚 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO|RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 |GPIO_Pin_14| GPIO_Pin_15; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init
[单片机]
<font color='red'>STM32</font> SPI使用
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved