历史上的今天

今天是:2024年09月20日(星期五)

正在发生

2018年09月20日 | STM32学习笔记之USB数据接收和发送流程分析

发布者:lqs1975 来源: eefocus关键字:STM32  USB  数据接收  发送 手机看文章 扫描二维码
随时随地手机看文章

既然学习了USB,那就必须的搞懂USB设备与USB主机数据是怎么通讯的。这里主要讲设备端,因为我们的代码是做USB设备用的。

我们需要必须要定义了USB中断。起始在STM32的中断向量表中给USB两个中断,我们可以在stm32f10x.h中找到这两个中断:


USB_HP_CAN1_TX_IRQn = 19, /*!< USB Device High Priority or CAN1 TX Interrupts */ USB_LP_CAN1_RX0_IRQn = 20, /*!< USB Device Low Priority or CAN1 RX0 Interrupts */

这两个中断是USB与CAN复用的中断,在做USB用时,表示USB设备的高优先级与低优先级中断。在我的工程中,我选择用低优先级的USB中断。代码如下:


void USB_LP_CAN1_RX0_IRQHandler(void) { USB_Istr(); }

中断服务程序很简单,就是在发生中断的时候调用USB_istr()函数。USB_istr()这个函数我们之前说过的,在usb_istr.c中定义的。这个函数处理ISTR中断状态寄存器中定义的中断,包括:CTR正确传输中断、RESET复位中断,DOVR分组缓冲溢出中断、ERR错误中断、WAKEUP中断、SUSP挂起中断、SOF帧首中断、ESOF期望帧首中断。这里重点是CTR中断,在USB在正确发送或正确接收数据后,USB模块自动回将ISTR寄存器的该位置1,触发中断CTR中断。在USB_istr()中CTR的处理代码如下:


#if (IMR_MSK & ISTR_CTR) //正确传输中断CTR标志 if (wIstr & ISTR_CTR & wInterrupt_Mask)//读出的中断标志是CRT中断标志,且CRT中断使能了 { CTR_LP(); //调用正确传输中断服务程序 #ifdef CTR_CALLBACK CTR_Callback(); //当定义了CTR_CALLBACK,则调用CTR_Callback,像钩子函数一样,在发生CRT中断时做点什么 #endif }

首先要解释下 #if (IMR_MSK & ISTR_CTR) 这句话。

#define IMR_MSK (CNTR_CTRM | CNTR_WKUPM | CNTR_SUSPM | CNTR_ERRM | CNTR_SOFM \ | CNTR_ESOFM | CNTR_RESETM )

这是IMR_MSK的定义,表示包含所有中断的掩码,IMR_MSK & ISTR_CTR表示:如果ISTR_CTR是规定的中断类别,则编译#if与#endif之间的代码。很明显这里符合。然后,判断下从CNTR寄存器中读出来的中断值是CRT中断,且该中断已经在CNTR中使能了。接着调用CTR_LP()函数处理,如果定义了CTR_CALLBACK,则调用CTR_Callback()函数,该函数是个钩子函数,让用户在正确接收到数据后能够做些什么,比如说亮下灯或通过串口打印些消息。

这里需要着分析下CTR_LP()这个函数在usb_int.c中定义。代码如下:


/******************************************************************************* * Function Name : CTR_LP. * Description : 低优先级的端点正确传输中断服务程序 * Input : None. * Output : None. * Return : None. *******************************************************************************/ void CTR_LP(void) { __IO uint16_t wEPVal = 0; while (((wIstr = _GetISTR()) & ISTR_CTR) != 0) //读取中断状态寄存器的值,看是否是CRT(正确传输中断) { EPindex = (uint8_t)(wIstr & ISTR_EP_ID); //获取产生中断的端点号, if (EPindex == 0) //如果端点0 { SaveRState = _GetENDPOINT(ENDP0); //读取端点0的状态寄存器 SaveTState = SaveRState & EPTX_STAT; //保存端点0发送状态 SaveRState &= EPRX_STAT; //保存端点0接收状态 _SetEPRxTxStatus(ENDP0,EP_RX_NAK,EP_TX_NAK);//设置端点0对主机以NAK方式响应所有的接收和发送请求 if ((wIstr & ISTR_DIR) == 0) //如果是IN令牌 { _ClearEP_CTR_TX(ENDP0); //清除端点0正确发送标志位 In0_Process(); //处理IN令牌包 /* before terminate set Tx & Rx status */ _SetEPRxTxStatus(ENDP0,SaveRState,SaveTState);//在传输之前设置端点0接收发送状态位 return; } else //OUT令牌 { wEPVal = _GetENDPOINT(ENDP0); //获取端点0的端点寄存器的值 if ((wEPVal &EP_SETUP) != 0) //SETUP分组传输完成标志位 { _ClearEP_CTR_RX(ENDP0); //清除端点0的接收标志位 Setup0_Process(); //端点0建立阶段的数据处理 _SetEPRxTxStatus(ENDP0,SaveRState,SaveTState);//设置端点0阶接收发送标志位 return; } else if ((wEPVal & EP_CTR_RX) != 0) //正确接收标志位 { _ClearEP_CTR_RX(ENDP0); //清除端点0正确标志位 Out0_Process(); //处理OUT令牌包 _SetEPRxTxStatus(ENDP0,SaveRState,SaveTState);//设置端点0的接收发送状态 return; } } }/* if(EPindex == 0) */ else //如果非0端点 { wEPVal = _GetENDPOINT(EPindex); //获取该端点的端点寄存器的值 if ((wEPVal & EP_CTR_RX) != 0) //正确接收标志 { _ClearEP_CTR_RX(EPindex); //清除端点正确接收标志 (*pEpInt_OUT[EPindex-1])(); //调用注册过的端点OUT处理函数 } /* if((wEPVal & EP_CTR_RX) */ if ((wEPVal & EP_CTR_TX) != 0) //正确发送标志 { _ClearEP_CTR_TX(EPindex); //清除正确发送标志 (*pEpInt_IN[EPindex-1])(); //调用注册过的端点IN处理函数 } /* if((wEPVal & EP_CTR_TX) != 0) */ }/* if(EPindex == 0) else */ }/* while(...) */ }

这个函数首先会判断是否真的CTR中断,如果是,执行while()中的代码,用EPindex来保存产生中断的端点号。EPindex为0表示是端点0产生的中断,说明此时USB还处于枚举阶段。EPindex不为0,表示枚举已经成功了,USB处于正常工作状态。

在枚举阶段,SaveRState保存端点0寄存器的值,接着SaveTState = SaveRState & EPTX_STAT;和SaveRState &=  EPRX_STAT;这两句,SaveTState保存当前发送端点0的状态, SaveRState 保存当前接收端点的状态。接着设置接收端点0为NAk状态,发送端点0也设置成NAK状态,也就是说当主机发送任何数据,从机只以NAK回应,从机也只能发送NAK数据,即不允许在数据处理阶段进行数据通讯。然后判断是输入还是输出。如果是输入(注意这里的输入是相对于主机来说的)则清除端点寄存器的EP_CTR_TX标志位,并且调用IN令牌包处理函数In0_Process()(在usb_core.c中定义)。如果是输出(注意这里的输出是相对于主机来说的),则还要判断接收到是SETUP包还是OUT令牌包,如果是SETUP包,清除端点0寄存器的EP_SETUP位,并且调动SETUP处理函数Setup0_Process(),同时还要回复原来的接发端点的状态,准备处理下一次的中断处理。如果是OUT令牌包,清除端点0寄存器的EP_CRT_RX位,调用OUT处理函数Out0_Process(),同时还要回复原来接法端口的状态,准备处理下一次的中断处理。

在工作阶段或者说是非枚举阶段,首先要判断下是EP_CTR_RX还EP_CTR_TX标志,如果是EP_CTR_RX正确接收标志,则清除该标志,调用对应端点的OUT处理函数(*pEpInt_OUT[EPindex-1])()(在usb_istr中有注册过),如果是EP_CTR_TX标志,则清除该标志,调用对应端点的IN处理函数(*pEpInt_IN[EPindex-1])()(在usb_istr中有注册过)。

在usb_istr.c中非别注册了7个端点输入函数和端点输出函数。如下:


/*定义指向指针的函数指针数组,函数指针分别指向7个端点输入服务程序*/ void (*pEpInt_IN[7])(void) = { EP1_IN_Callback, EP2_IN_Callback, EP3_IN_Callback, EP4_IN_Callback, EP5_IN_Callback, EP6_IN_Callback, EP7_IN_Callback, }; /*定义指向指针的函数指针数组,函数指针分别指向7个端点输出服务程序*/ void (*pEpInt_OUT[7])(void) = { EP1_OUT_Callback, EP2_OUT_Callback, EP3_OUT_Callback, EP4_OUT_Callback, EP5_OUT_Callback, EP6_OUT_Callback, EP7_OUT_Callback, };

而这些函数的定义在usb_endp.c中,我们拿EP1_OUT_Callback()函数分析。


/******************************************************************************* * Function Name : EP1_OUT_Callback. * Description : 端点1输出回调函数 * Input : None. * Output : None. * Return : None. *******************************************************************************/ void EP1_OUT_Callback(void) { PMAToUserBufferCopy(USB_Receive_Buffer, ENDP1_RXADDR, REPORT_COUNT); //PMA缓冲区接收到的数据拷贝到用户自定义缓冲区USB_Receive_Buffer中 SetEPRxStatus(ENDP1, EP_RX_VALID); //设置端点的接收状态为有效,因为端点接收到数据后会端点状态自动设置成停止状态 USB_Received_Flag=1; //设置接收到数据标志位 }

这个函数的工作很简单,首先因为数输出端点,是接收数据的,而USB模块接收到的数据又是暂存在PAM双缓冲区中,所以要线把数据从PMA中读取出来,放到用户自己缓冲区中。接着设置端点接收状态有效,因为当接收数据后,端点就会被关闭。最后置位接收带数据标志。

以上就是USB设备的接收的流程。接下去讲讲发送流程。发送比接收简单多了看看下面的代码就知道了。


/** * @brief 通过USB发送数据 * @param data 数据存储首地址 * @param dataNum 发送的数据字节数 * @retval 发送的字节数 */ uint32_t USB_SendData(uint8_t *data,uint32_t dataNum) { //将数据通过USB发送出去 UserToPMABufferCopy(data, ENDP2_TXADDR, dataNum);//拷贝数据到PMA中 SetEPTxCount(ENDP2, REPORT_COUNT); //从端点2发送64字节数据 SetEPTxValid(ENDP2); //使能端点2的发送状态 return dataNum; }

把要发送的数据拷贝到PMA中,之后设置端点计数,使能下端点,数据就发送出去了。

总结下:

数据发送:UserToPMABufferCopy--->SetEPTxCount--->SetEPTxValid

数据接收:USB_LP_CAN1_RX0_IRQHandler--->USB_Istr---->CTR_LP--->EPx_OUT_Callback


关键字:STM32  USB  数据接收  发送 引用地址:STM32学习笔记之USB数据接收和发送流程分析

上一篇:STM32CubeMX教程之简介及基本使用
下一篇:STM32例程之USB HID双向数据传输

推荐阅读

随着边缘计算的发展与应用,未来的交通会是什么样?大概是这样:更高效,更安全。拥堵?事故?不存在的。9月18日,2018世界人工智能大会·边缘智能主题论坛在上海召开,论坛以“边缘计算,智能未来”为主题,是2018世界人工智能大会的重要主题论坛之一。会上,来自政府、院所及企业的专家深入探讨,共同为我国边缘计算与人工智能发展趋势把脉,详解边缘计...
43.1 RTC简介RTC—real time clock,实时时钟,主要包含日历、闹钟和自动唤醒这三部分的功能,其中的日历功能我们使用的最多。日历包含两个32bit的时间寄存器,可直接输出时分秒,星期、月、日、年。比起F103系列的RTC只能输出秒中断,剩下的其他时间需要软件来实现,429的RTC可谓是脱胎换骨,让我们在软件编程时大大降低了难度。RTC功能框图分析43.2 ...
9月19日,由中国电子视像行业协会主办,中国电子视像行业协会激光电视产业分会承办的第二届全球激光显示技术与产业发展论坛在北京举行。在论坛上,中国工程院院士许祖彦通过音频方式发表致辞,许祖彦指出,激光显示是唯一全面满足超高清显示国际标准BT.2020的显示技术,下一代显示产业的主流就是激光显示。许祖彦认为,激光显示具有亮度高、方向性好、单色...
据Strategy Analytics报告,全球智能手机应用处理器(AP)市场在2021年第二季度连续第6个季度实现了两位数的同比收入增长。2021年第二季度智能手机应用处理器营收份额(来源:Strategy Analytics, Inc.)2021年第二季度,全球智能手机AP市场规模达到70亿美元,同比增长18%。Strategy Analytics的研究报告预计,高通、联发科、苹果、三星LSI和Unisoc在2021年...

史海拾趣

问答坊 | AI 解惑

VHDL语言中 q &lt;= (others =&gt; 0) 是什么意思

VHDL语言中 q <= (others => 0) 是什么意思?…

查看全部问答∨

国内外高端频率控制器件的技术比较

0 引言  近年来,通信业频率源的大量需求以及军工方面对频率源广泛应用,加之精密导航定位对参考时间的依赖,作为程控交换设备的一级铷原子频标的价格和体积都逐渐接近了高稳定度振荡器。另一方面目前市场用量最大的各种石英晶体谐振器和振荡器的 ...…

查看全部问答∨

saa3010的解码不稳定

void IR_INT0() interrupt 0 using 0 {        TL0=0x86;  //赋低位 TR0=1;     //开启定时器0     TH0=0xfe;   //赋高位     EX0=0;    & ...…

查看全部问答∨

单片机交通灯控制汇总[1]

;******************************************************************************** ;*  十字路口红绿灯控制器                          &n ...…

查看全部问答∨

开关电源中电流检测电路的探讨

开关电源中电流检测电路的探讨 功率开关电路的电路拓扑分为电流模式控制和电压模式控制。电流模式控制具有动态反应快、补偿电路简化、增益带宽大、输出电感小、易于均流等优点,因而取得越来越广泛的应用。而在电流模式的控制电路中,需要准确、 ...…

查看全部问答∨

设备上WINCE 环境下怎样实现URL 连接服务器

在虚拟机上 能够正常实现连接服务器 取得文件;现在,在设备上,则提示“无法连接服务器”; 代码: CInternetSession IS; CFile * pFile; CString sURL; sURL = (char *)strDataURL; sURL.MakeUpper();   pFile=IS.OpenURL(sURL, ...…

查看全部问答∨

无锡矽太恒科电子有限公司 MX27 开发板或是核心板

请问有使用无锡矽太恒科电子有限公司mx27开发板或是核心板的吗?希望交流一下。QQ:394238147…

查看全部问答∨

【挖电源】机箱内的电源,保险光爆裂,光荣下岗

可以说,保险管是粉碎性爆裂,场面极其震撼,一闪即逝 [ 本帖最后由 dongguanze 于 2011-8-1 20:47 编辑 ]…

查看全部问答∨

关于数控开关电源功能上的一点建议。

数控开关电源送电后很多都会出现瞬时的超压超流现象。试验方法是接一个LED,调整好电压让LED正常发光。看这时的电流是多少。然后限流。关闭数控开关的电源。然后开启。如果LED突然亮一下后再也不亮了。说明过流了。希望这次的DIY考虑这个问题。增加 ...…

查看全部问答∨

高薪聘请 急急急

FPGA开发工程师(verilog语言) 要求: 1.有两年以上开发经验,视频相关 2.有USB驱动经验,包括上位机的USB驱动 3.任务比较急,联系从速 联系email:guolonghui110@163.com 联系电话 : 15505883026…

查看全部问答∨
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻
更多往期活动

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved