基本说明
STM32访问外部存储器是需要配置FSMC的相关函数,在STM32固件库函数说明的中文翻译版中并没有这部分的说明,因此需要参考库函数的相关说明和库中自带的例程。
以下内容来自AN2784应用笔记:
2.1
FSMC配置
控制一个NOR闪存存储器,需要FSMC提供下述功能:
●
选择合适的存储块映射NOR闪存存储器:共有4个独立的存储块可以用于与NOR闪存、SRAM和PSRAM存储器接口,每个存储块都有一个专用的片选管脚。
●
使用或禁止地址/数据总线的复用功能。
●
选择所用的存储器类型:NOR闪存、SRAM或PSRAM。
●
定义外部存储器的数据总线宽度:8或16位。
●
使用或关闭同步NOR闪存存储器的突发访问模式。
●
配置等待信号的使用:开启或关闭,极性设置,时序配置。
●
使用或关闭扩展模式:扩展模式用于访问那些具有不同读写操作时序的存储器。
因为NOR闪存/SRAM控制器可以支持异步和同步存储器,用户只须根据存储器的参数配置使用到的参数。
FSMC提供了一些可编程的参数,可以正确地与外部存储器接口。依存储器类型的不同,有些参数是不需要的。
当使用一个外部异步存储器时,用户必须按照存储器的数据手册给出的时序数据,计算和设置下列参数:
●
ADDSET:地址建立时间
●
ADDHOLD:地址保持时间
●
DATAST:数据建立时间
●
ACCMOD:访问模式 这个参数允许 FSMC可以灵活地访问多种异步的静态存储器。共有4种扩展模式允许以不同的时序分别读写存储器。 在扩展模式下,FSMC_BTR用于配置读操作,FSMC_BWR用于配置写操作。(译注:如果读时序与写时序相同,只须使用FSMC_BTR即可。)
如果使用了同步的存储器,用户必须计算和设置下述参数:
●
CLKDIV:时钟分频系数
●
DATLAT:数据延时
如果存储器支持的话,NOR闪存的读操作可以是同步的,而写操作仍然是异步的。
当对一个同步的NOR闪存编程时,存储器会自动地在同步与异步之间切换;因此,必须正确地设置所有的参数
程序分析
[cpp] view plaincopy
/*-- FSMC Configuration ----------------------------------------------------*/
p.FSMC_AddressSetupTime = 0x05; /*ADDSET 地址建立时间*/
p.FSMC_AddressHoldTime = 0x00; /*ADDHOLD 地址保持时间*/
p.FSMC_DataSetupTime = 0x07; /*DATAST 数据建立时间*/
p.FSMC_BusTurnAroundDuration = 0x00; /*BUSTURN 总线返转时间*/
p.FSMC_CLKDivision = 0x00; /*CLKDIV 时钟分频*/
p.FSMC_DataLatency = 0x00; /*DATLAT 数据保持时间*/
p.FSMC_AccessMode = FSMC_AccessMode_B; /*访问模式*/
/*NOR/SRAM的存储块,共4个选项*/
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM2;
/*是否选择地址和数据复用数据线*/
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
/*连接到相应存储块的外部存储器类型*/
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_NOR;
/*存储器数据总线宽度*/
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
/*使能或关闭同步NOR闪存存储器的突发访问模式设置是否使用迸发访问模式(应该就是连续读写模式吧)*/
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
/*设置WAIT信号的有效电平*/
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
/*设置是否使用环回模式*/
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
/*设置WAIT信号有效时机*/
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
/*设定是否使能写操作*/
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
/*设定是否使用WAIT信号*/
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
/*使能或关闭扩展模式,扩展模式用于访问具有不同读写操作时序的存储器,设定是否使用单独的写时序*/
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
/*设定是否使用异步等待信号*/
FSMC_NORSRAMInitStructure.FSMC_AsyncWait = FSMC_AsyncWait_Disable;
/*设定是否使用迸发写模式*/
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
/*设定读写时序*/
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p; //
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p; //
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure); //
/* Enable FSMC Bank1_NOR Bank */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE); //
}
实际例程
以下例程来自 stm3210e_eval_fsmc_nor.c具体信息参加固件库中源文件。
[c-sharp] view plaincopy
/**
******************************************************************************
* @file stm3210e_eval_fsmc_nor.c
* @author MCD Application Team
* @version V4.3.0
* @date 10/15/2010
* @brief This file provides a set of functions needed to drive the M29W128FL,
* M29W128GL and S29GL128P NOR memories mounted on STM3210E-EVAL board.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
*
© COPYRIGHT 2010 STMicroelectronics
*/
/* Includes ------------------------------------------------------------------*/
#include "stm3210e_eval_fsmc_nor.h"
/** @addtogroup Utilities
* @{
*/
/** @addtogroup STM32_EVAL
* @{
*/
/** @addtogroup STM3210E_EVAL
* @{
*/
/** @addtogroup STM3210E_EVAL_FSMC_NOR
* @brief This file provides a set of functions needed to drive the M29W128FL,
* M29W128GL and S29GL128P NOR memories mounted on STM3210E-EVAL board.
* @{
*/
/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Types
* @{
*/
/**
* @}
*/
/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Defines
* @{
*/
/**
* @brief FSMC Bank 1 NOR/SRAM2
*/
#define Bank1_NOR2_ADDR ((uint32_t)0x64000000)
/* Delay definition */
#define BlockErase_Timeout ((uint32_t)0x00A00000)
#define ChipErase_Timeout ((uint32_t)0x30000000)
#define Program_Timeout ((uint32_t)0x00001400)
/**
* @}
*/
/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Macros
* @{
*/
#define ADDR_SHIFT(A) (Bank1_NOR2_ADDR + (2 * (A)))
#define NOR_WRITE(Address, Data) (*(__IO uint16_t *)(Address) = (Data))
/**
* @}
*/
/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroupSTM3210E_EVAL_FSMC_NOR_Private_Function_Prototypes
* @{
*/
/**
* @}
*/
/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Functions
* @{
*/
/**
* @brief Configures the FSMC and GPIOs to interface with the NOR memory.
* This function must be called before any write/read operation
* on the NOR.
* @param None
* @retval None
*/
void NOR_Init(void)
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);
/*-- GPIO Configuration ------------------------------------------------------*/
/*!< NOR Data lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 |
GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/*!< NOR Address lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 |
GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/*!< NOE and NWE configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/*!< NE2 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOG, &GPIO_InitStructure);
/*!< Configure PD6 for NOR memory Ready/Busy signal */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/*-- FSMC Configuration ----------------------------------------------------*/
p.FSMC_AddressSetupTime = 0x02;
p.FSMC_AddressHoldTime = 0x00;
p.FSMC_DataSetupTime = 0x05;
p.FSMC_BusTurnAroundDuration = 0x00;
p.FSMC_CLKDivision = 0x00;
p.FSMC_DataLatency = 0x00;
p.FSMC_AccessMode = FSMC_AccessMode_B;
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM2;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_NOR;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
/*!< Enable FSMC Bank1_NOR Bank */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);
}
/**
* @brief Reads NOR memory's Manufacturer and Device Code.
* @param NOR_ID: pointer to a NOR_IDTypeDef structure which will hold the
* Manufacturer and Device Code.
* @retval None
*/
void NOR_ReadID(NOR_IDTypeDef* NOR_ID)
{
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x0090);
NOR_ID->Manufacturer_Code = *(__IO uint16_t *) ADDR_SHIFT(0x0000);
NOR_ID->Device_Code1 = *(__IO uint16_t *) ADDR_SHIFT(0x0001);
NOR_ID->Device_Code2 = *(__IO uint16_t *) ADDR_SHIFT(0x000E);
NOR_ID->Device_Code3 = *(__IO uint16_t *) ADDR_SHIFT(0x000F);
}
/**
* @brief Erases the specified Nor memory block.
* @param BlockAddr: address of the block to erase.
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_Status NOR_EraseBlock(uint32_t BlockAddr)
{
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x0080);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE((Bank1_NOR2_ADDR + BlockAddr), 0x30);
return (NOR_GetStatus(BlockErase_Timeout));
}
/**
* @brief Erases the entire chip.
* @param None
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_Status NOR_EraseChip(void)
{
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x0080);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x0010);
return (NOR_GetStatus(ChipErase_Timeout));
}
/**
* @brief Writes a half-word to the NOR memory.
* @param WriteAddr: NOR memory internal address to write to.
* @param Data: Data to write.
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_Status NOR_WriteHalfWord(uint32_t WriteAddr, uint16_t Data)
{
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00A0);
NOR_WRITE((Bank1_NOR2_ADDR + WriteAddr), Data);
return (NOR_GetStatus(Program_Timeout));
}
/**
* @brief Writes a half-word buffer to the FSMC NOR memory.
* @param pBuffer: pointer to buffer.
* @param WriteAddr: NOR memory internal address from which the data will be
* written.
* @param NumHalfwordToWrite: number of Half words to write.
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_Status NOR_WriteBuffer(uint16_t* pBuffer, uint32_t WriteAddr, uint32_t NumHalfwordToWrite)
{
NOR_Status status = NOR_ONGOING;
do
{
/*!< Transfer data to the memory */
status = NOR_WriteHalfWord(WriteAddr, *pBuffer++);
WriteAddr = WriteAddr + 2;
NumHalfwordToWrite--;
}
while((status == NOR_SUCCESS) && (NumHalfwordToWrite != 0));
return (status);
}
/**
* @brief Writes a half-word buffer to the FSMC NOR memory. This function
* must be used only with S29GL128P NOR memory.
* @param pBuffer: pointer to buffer.
* @param WriteAddr: NOR memory internal address from which the data will be
* written.
* @param NumHalfwordToWrite: number of Half words to write.
* The maximum allowed value is 32 Half words (64 bytes).
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_Status NOR_ProgramBuffer(uint16_t* pBuffer, uint32_t WriteAddr, uint32_t NumHalfwordToWrite)
{
uint32_t lastloadedaddress = 0x00;
uint32_t currentaddress = 0x00;
uint32_t endaddress = 0x00;
/*!< Initialize variables */
currentaddress = WriteAddr;
endaddress = WriteAddr + NumHalfwordToWrite - 1;
lastloadedaddress = WriteAddr;
/*!< Issue unlock command sequence */
NOR_WRITE(ADDR_SHIFT(0x00555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
/*!< Write Write Buffer Load Command */
NOR_WRITE(ADDR_SHIFT(WriteAddr), 0x0025);
NOR_WRITE(ADDR_SHIFT(WriteAddr), (NumHalfwordToWrite - 1));
/*!< Load Data into NOR Buffer */
while(currentaddress <= endaddress)
{
/*!< Store last loaded address & data value (for polling) */
lastloadedaddress = currentaddress;
NOR_WRITE(ADDR_SHIFT(currentaddress), *pBuffer++);
currentaddress += 1;
}
NOR_WRITE(ADDR_SHIFT(lastloadedaddress), 0x29);
return(NOR_GetStatus(Program_Timeout));
}
/**
* @brief Reads a half-word from the NOR memory.
* @param ReadAddr: NOR memory internal address to read from.
* @retval Half-word read from the NOR memory
*/
uint16_t NOR_ReadHalfWord(uint32_t ReadAddr)
{
NOR_WRITE(ADDR_SHIFT(0x00555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x002AA), 0x0055);
NOR_WRITE((Bank1_NOR2_ADDR + ReadAddr), 0x00F0 );
return (*(__IO uint16_t *)((Bank1_NOR2_ADDR + ReadAddr)));
}
/**
* @brief Reads a block of data from the FSMC NOR memory.
* @param pBuffer: pointer to the buffer that receives the data read from the
* NOR memory.
* @param ReadAddr: NOR memory internal address to read from.
* @param NumHalfwordToRead : number of Half word to read.
* @retval None
*/
void NOR_ReadBuffer(uint16_t* pBuffer, uint32_t ReadAddr, uint32_t NumHalfwordToRead)
{
NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);
NOR_WRITE((Bank1_NOR2_ADDR + ReadAddr), 0x00F0);
for(; NumHalfwordToRead != 0x00; NumHalfwordToRead--) /*!< while there is data to read */
{
/*!< Read a Halfword from the NOR */
*pBuffer++ = *(__IO uint16_t *)((Bank1_NOR2_ADDR + ReadAddr));
ReadAddr = ReadAddr + 2;
}
}
/**
* @brief Returns the NOR memory to Read mode.
* @param None
* @retval NOR_SUCCESS
*/
NOR_Status NOR_ReturnToReadMode(void)
{
NOR_WRITE(Bank1_NOR2_ADDR, 0x00F0);
return (NOR_SUCCESS);
}
/**
* @brief Returns the NOR memory to Read mode and resets the errors in the NOR
* memory Status Register.
* @param None
* @retval NOR_SUCCESS
*/
NOR_Status NOR_Reset(void)
{
NOR_WRITE(ADDR_SHIFT(0x00555), 0x00AA);
NOR_WRITE(ADDR_SHIFT(0x002AA), 0x0055);
NOR_WRITE(Bank1_NOR2_ADDR, 0x00F0);
return (NOR_SUCCESS);
}
/**
* @brief Returns the NOR operation status.
* @param Timeout: NOR progamming Timeout
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_Status NOR_GetStatus(uint32_t Timeout)
{
uint16_t val1 = 0x00, val2 = 0x00;
NOR_Status status = NOR_ONGOING;
uint32_t timeout = Timeout;
/*!< Poll on NOR memory Ready/Busy signal ----------------------------------*/
while((GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_6) != RESET) && (timeout > 0))
{
timeout--;
}
timeout = Timeout;
while((GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_6) == RESET) && (timeout > 0))
{
timeout--;
}
/*!< Get the NOR memory operation status -----------------------------------*/
while((Timeout != 0x00) && (status != NOR_SUCCESS))
{
Timeout--;
/*!< Read DQ6 and DQ5 */
val1 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);
val2 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);
/*!< If DQ6 did not toggle between the two reads then return NOR_Success */
if((val1 & 0x0040) == (val2 & 0x0040))
{
return NOR_SUCCESS;
}
if((val1 & 0x0020) != 0x0020)
{
status = NOR_ONGOING;
}
val1 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);
val2 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);
if((val1 & 0x0040) == (val2 & 0x0040))
{
return NOR_SUCCESS;
}
else if((val1 & 0x0020) == 0x0020)
{
return NOR_ERROR;
}
}
if(Timeout == 0x00)
{
status = NOR_TIMEOUT;
}
/*!< Return the operation status */
return (status);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2010 STMicroelectronics *****END OF FILE****/
上一篇:STM32(Cortex-M3)中优先级的概念
下一篇:STM32外设使用要点
推荐阅读
史海拾趣
随着技术实力的增强和产品线的丰富,AND Displays开始积极拓展市场。公司不仅在国内建立了完善的销售网络,还积极开拓海外市场。通过与全球各大电子产品制造商的合作,AND Displays的显示面板逐渐进入了全球供应链,品牌影响力不断提升。同时,公司还注重品牌建设,通过参加国际展览、举办技术研讨会等方式,提升品牌知名度和美誉度。
作为一家有社会责任感的企业,德欣公司始终关注环境保护和可持续发展。公司积极推广绿色生产技术和资源循环利用方案,减少生产过程中的能源消耗和废弃物排放。同时,德欣公司还积极参与社会公益活动,为社区和环境贡献自己的力量。这些举措不仅体现了德欣公司的社会责任担当,也为其赢得了更多客户和合作伙伴的信任和支持。
DAPAudio深知产品质量对于企业长远发展的重要性。因此,公司投入大量资源用于提升产品的品质和生产效率。通过严格的质量控制流程和持续的技术创新,DAPAudio的产品在音质、稳定性和耐用性方面均达到了行业领先水平。这一努力不仅赢得了客户的信赖,也树立了公司高品质的品牌形象。
DAPAudio深知产品质量对于企业长远发展的重要性。因此,公司投入大量资源用于提升产品的品质和生产效率。通过严格的质量控制流程和持续的技术创新,DAPAudio的产品在音质、稳定性和耐用性方面均达到了行业领先水平。这一努力不仅赢得了客户的信赖,也树立了公司高品质的品牌形象。
作为一家在电子行业具有影响力的企业,Emulation始终关注社会责任和可持续发展。公司积极参与各种公益活动,为当地社区的发展做出了贡献。同时,Emulation还注重环保和节能,致力于推动绿色电子产品的设计和生产。这些举措不仅提升了公司的社会形象,还为公司的长期发展奠定了坚实的基础。
【转载】虎年新晶片組体验ASUS P7H55D-M EVO 开箱介紹 ASUS, P7H55DM-EVO, 華碩, LGA1156, H55 自從INTEL一舉推出新世代內顯CPU之後,也等於宣告以後的INTEL主機板晶片組上北橋將走入歷史,這新的單晶片組命名為H55 Express以及H57 Express,是為LGA-1156插槽的CPU專門設計的,它是基於原本的P55晶片 ...… 查看全部问答∨ |
|
学习STM8S103,想把内部高速时钟切换到低速时钟,按手册上对寄存器操作,如下: void CLK_init(void) { CLK_ICKR=0x08; CLK_SWCR=0x02; CLK_SWR=0xd2; while (!(CLK_SWCR & 0x08) ...… 查看全部问答∨ |
flash的电源也有3.3V了,复位也是3.3V了,最主要的是用仿真器也连上了,可刚要下载就出现要密码。试过全F不行,这芯片我没有烧过程序,也load过gel文件了。可是出现GEL: Error loading file \'D:\\CCStudio_v3.1\\cc\\gel\\c2810.gel\': function \ ...… 查看全部问答∨ |
我用TMS32LF2407做了一个非常小的系统。全部工作就是用XF管脚控制一个LED的闪烁。我把程序烧进FLASH后,用防真器带着跑(MP/MC#=0),程序正常运行。但是我把防真器去掉,重新上电后,程序不能正常运行。我分析,程序没有执行。我很想知道,为什么 ...… 查看全部问答∨ |
|
replyreload += \',\' + 1484868;「ADI模拟大学堂」数模转换器(每日一份资料) 「ADI模拟大学堂」开始每天更新一份资料,资料更新目录在后面,希望大家支持。希望能获得大家的回帖,我也不用做回复可见。希望大家喜欢ADI的资料,个人很是喜欢ADI的 ...… 查看全部问答∨ |
先给大家一个论文的摘要看看: Abstract:It’s really a beginning for use LED lighting in explosion-proof areas. In the explosion circumstance, LED drive power is required to installed in a hermetic cavity, which gives high require ...… 查看全部问答∨ |