ARM映像文件 启动代码中Image$$??$$Limit 的含义 对于刚学习ARM的人来说,如果分析它的启动代码,往往不明白下面几个变量的含义:|Image$$RO$$Limit|、|Image$$RW$$Base|、|Image$$ZI$$Base|。 |Image$$RO$$Base| :RO段起始地址 首先申明我使用的调试软件为ADS1.2,当我们把程序编写好以后,就要进行编译和链接了,在ADS1.2中选择MAKE按钮,会出现一个Errors and Warnings 的对话框,在该栏中显示编译和链接的结果,如果没有错误,在文件的最后应该能看到Image component sizes,后面紧跟的依次是Code,RO Data ,RW Data ,ZI Data ,Debug 各个项目的字节数,最后会有他们的一个统计数据: Code 163632 ,RO Data 20939 ,RW Data 53 ,ZI Data 17028 Tatal RO size (Code+ RO Data) 184571 (180.25kB) Tatal RW size(RW Data+ ZI Data) 17081(16.68 kB) Tatal ROM size(Code+ RO Data+ RW Data) 184624(180.30 kB) 后面的字节数是根据用户不同的程序而来的,下面就以上面的数据为例来介绍那几个变量的计算。 在ADS的Debug Settings中有一栏是Linker/ARM Linker,在output选项中有一个RO base选项,下面应该有一个地址,我这里是0x0c100000,后面的RW base 地址是0x0c200000,然后在Options选项中有Image entry point ,是一个初始程序的入口地址,我这里是0x0c100000 。 Linker/ARM Linker:RO base—0x0c100000 RW base—0x0c200000 Options:Image entry point—0x0c100000 有了上面这些信息我们就可以完全知道这几个变量是怎么来的了: |Image$$RO$$Base| = Image entry point = 0x0c100000 ;表示程序代码存放的起始地址 |Image$$RO$$Limit|=程序代码起始地址+代码长度+1=0x0c100000+Tatal RO size+1 = 0x0c100000 + 184571 + 1 = 0x0c100000 +0x2D0FB + 1 = 0x0c12d0fc |Image$$RW$$Base| = 0x0c200000 ;由RW base 地址指定 |Image$$RW$$Limit| =|Image$$RW$$Base|+ RW Data 53 = 0x0c200000+0x37(4的倍数,0到55,共56个单元) =0x0c200037 |Image$$ZI$$Base| = |Image$$RW$$Limit| + 1 =0x0c200038 |Image$$ZI$$Limit| = |Image$$ZI$$Base| + ZI Data 17028 =0x0c200038 + 0x4284 =0x0c2042bc 也可以由此计算: |Image$$ZI$$Limit| = |Image$$RW$$Base| +TatalRWsize(RWData+ZIData) 17081 =0x0c200000+0x42b9+3(要满足4的倍数) =0x0c2042bc 2410启动代码注释 BaseOfROM DCD |Image$$RO$$Base| adr r0, ResetEntry;ResetEntry是复位运行时域的起始地址,在boot nand中一般是0 ;part 1,通过比较,将ro搬到sdram里,搬到的目的地址从 | Image$$RO$$Base| 开始,到|Image$$RO$$Limit|结束 ;part 3,将sdram zi初始化为0,地址从|Image$$ZI$$Base|到|Image$$ZI$$Limit|
什么是arm的映像文件 arm映像文件其实就是可执行文件,包括bin或hex两种格式,可以直接烧到rom里执行。在axd调试过程中,我们调试的是axf文件,其实这也是一种映像文件,它只是在bin文件中加了一个文件头和一些调试信息。映像文件的组成
ARM映像文件是一个层次性结构的文件,包括了域(region),输出段(output section)和输入段(input section)。所谓域,指的就是整个bin映像文件所处在的区域,它又分为加载域和运行域。加载域就是映像文件被静态存放的工作区域,一般来说flash里的 整个bin文件所在的地址空间就是加载域,当然在程序一般都不会放在 flash里执行,一般都会搬到sdram里运行工作,它们在被搬到sdram里工作所处的地址空间就是运行域。ARM映像文件一开始总是存储在ROM/Flash里面的,其RO部分既可以在ROM/Flash里面执行,也可以转移到速度更快的RAM中执行;而RW和ZI这两部分是必须转移到可写的RAM里去,其实RW包括ZI区域。什么是RO段、RW段和ZI段一个ARM程序包含3部分:RO,RW和ZI
RO就是ReadOnly,程序中的指令和常量
RW就是Read/Write,程序中的已初始化变量
ZI就是Zero Init,程序中的未初始化的变量
Image文件包含了RO和RW数据。
之所以Image文件不包含ZI数据,是因为ZI数据都是0,没必要包含,只要程序运行之前将ZI数据所在的区域一律清零即可。包含进去反而浪费存储空间。
Q:为什么Image中必须包含RO和RW?
A:因为RO中的指令和常量以及RW中初始化过的变量是不能像ZI那样“无中生有”的。
ARM程序的执行过程
从以上两点可以知道,烧录到ROM中的image文件与实际运行时的ARM程序之间并不是完全一样的。因此就有必要了解ARM程序是如何从ROM中的image到达实际运行状态的。
实际上,RO中的指令至少应该有这样的功能:
1. 将RW从ROM中搬到RAM中,因为RW是变量,变量不能存在ROM中。
2. 将ZI所在的RAM区域全部清零,因为ZI区域并不在Image中,所以需要程序根据编译器给出的ZI地址及大小来将相应得RAM区域清零。ZI中也是变量,同理:变量不能存在ROM中
在程序运行的最初阶段,RO中的指令完成了这两项工作后C程序才能正常访问变量。否则只能运行不含变量的代码。
为了更直观说明RO,RW,ZI在C中的意思,请看下面例子:
1)RO
看下面两段程序,他们之间差了一条语句,这条语句就是声明一个字符常量。因此按照我们之前说的,他们之间应该只会在RO数据中相差一个字节(字符常量为1字节)。
Prog1:
#include
void main(void)
{
;
}
Prog2:
#include
const char a = 5;
void main(void)
{
;
}
Prog1编译出来后的信息如下:
===========================================================
Code RO Data RW Data ZI Data Debug
948 60 0 96 0 Grand Totals
===========================================================
Total RO Size(Code + RO Data) 1008 ( 0.98kB)
Total RW Size(RW Data + ZI Data) 96 ( 0.09kB)
Total ROM Size(Code + RO Data + RW Data) 1008 ( 0.98kB)
===========================================================
Prog2编译出来后的信息如下:
===========================================================
Code RO Data RW Data ZI Data Debug
948 61 0 96 0 Grand Totals
===========================================================
Total RO Size(Code + RO Data) 1009 ( 0.99kB)
Total RW Size(RW Data + ZI Data) 96 ( 0.09kB)
Total ROM Size(Code + RO Data + RW Data) 1009 ( 0.99kB)
===========================================================
以上两个程序编译出来后的信息可以看出:
Prog1和Prog2的RO包含了Code和RO Data两类数据。他们的唯一区别就是Prog2的RO Data比Prog1多了1个字节。这正和之前的推测一致。
如果增加的是一条指令而不是一个常量,则结果应该是Code数据大小有差别。
2)RW同样再看两个程序,他们之间只相差一个“已初始化的变量”,按照之前所讲的,已初始化的变量应该是算在RW中的,所以两个程序之间应该是RW大小有区别。
Prog3:
#include
void main(void)
{
;
}
Prog4:
#include
char a = 5;
void main(void)
{
;
}
Prog3编译出来后的信息如下:
===========================================================
Code RO Data RW Data ZI Data Debug
948 60 0 96 0 Grand Totals
===========================================================
Total RO Size(Code + RO Data) 1008 ( 0.98kB)
Total RW Size(RW Data + ZI Data) 96 ( 0.09kB)
Total ROM Size(Code + RO Data + RW Data) 1008 ( 0.98kB)
===========================================================
Prog4编译出来后的信息如下:
===========================================================
Code RO Data RW Data ZI Data Debug
948 60 1 96 0 Grand Totals
===========================================================
Total RO Size(Code + RO Data) 1008 ( 0.98kB)
Total RW Size(RW Data + ZI Data) 97 ( 0.09kB)
Total ROM Size(Code + RO Data + RW Data) 1009 ( 0.99kB)
===========================================================
可以看出Prog3和Prog4之间确实只有RW Data之间相差了1个字节,这个字节正是被初始化过的一个字符型变量“a”所引起的。
3) ZI
再看两个程序,他们之间的差别是一个未初始化的变量“a”,从之前的了解中,应该可以推测,这两个程序之间应该只有ZI大小有差别。
Prog5:
#include
void main(void)
{
;
}
Prog6:
#include
char a;
void main(void)
{
;
}
Prog5编译出来后的信息如下:
===========================================================
Code RO Data RW Data ZI Data Debug
948 60 0 96 0 Grand Totals
===========================================================
Total RO Size(Code + RO Data) 1008 ( 0.98kB)
Total RW Size(RW Data + ZI Data) 96 ( 0.09kB)
Total ROM Size(Code + RO Data + RW Data) 1008 ( 0.98kB)
===========================================================
Prog6编译出来后的信息如下:
===========================================================
Code RO Data RW Data ZI Data Debug
948 60 0 97 0 Grand Totals
===========================================================
Total RO Size(Code + RO Data) 1008 ( 0.98kB)
Total RW Size(RW Data + ZI Data) 97 ( 0.09kB)
Total ROM Size(Code + RO Data + RW Data) 1008 ( 0.98kB)
===========================================================
编译的结果完全符合推测,只有ZI数据相差了1个字节。这个字节正是未初始化的一个字符型变量“a”所引起的。
注意:如果一个变量被初始化为0,则该变量的处理方法与未初始化华变量一样放在ZI区域。
即:ARM C程序中,所有的未初始化变量都会被自动初始化为0。
总结:
1)C中的指令以及常量被编译后是RO类型数据。
2)C中的未被初始化或初始化为0的变量编译后是ZI类型数据。
3) C中的已被初始化成非0值的变量编译后市RW类型数据。
附:
程序的编译命令(假定C程序名为tst.c):
armcc -c -o tst.o tst.c
armlink -noremove -elf -nodebug -info totals -info sizes -map -list aa.map -o tst.elf tst.o
编译后的信息就在aa.map文件中。
ROM主要指:NAND Flash,Nor Flash
RAM主要指:PSRAM,SDRAM,SRAM,DDRAM
|Image$$RO$$Limit| :RO段结束地址加1
|Image$$RW$$Base| :RW段起始地址
|Image$$RW$$Limit| :ZI段结束地址加1
|Image$$ZI$$Base| :ZI段起始地址
|Image$$ZI$$Limit| :ZI段结束地址加1
TopOfROM DCD |Image$$RO$$Limit|
BaseOfBSS DCD |Image$$RW$$Base|
BaseOfZero DCD |Image$$ZI$$Base|
EndOfBSS DCD |Image$$ZI$$Limit|
ldr r2, BaseOfROM;
cmp r0, r2
ldreq r0, TopOfROM;TopOfROM=0x30001de0,代码段地址的结束
beq InitRam
ldr r3, TopOfROM
0
ldmia r0!, {r4-r7}
stmia r2!, {r4-r7}
cmp r2, r3
bcc %B0;
;part 2,搬rw段到sdram,目的地址从|Image$$RW$$Base| 开始,到|Image$$ZI$$Base|结束
sub r2, r2, r3;r2=0
sub r0, r0, r2;
InitRam ;carry rw to baseofBSS
ldr r2, BaseOfBSS ;TopOfROM=0x30001de0,baseofrw
ldr r3, BaseOfZero ;BaseOfZero=0x30001de0
0
cmp r2, r3
ldrcc r1, [r0], #4
strcc r1, [r2], #4
bcc %B0
mov r0, #0;init 0
ldr r3, EndOfBSS;EndOfBSS=30001e40
1
cmp r2, r3
strcc r0, [r2], #4
bcc %B1
一个Scatter文件描述的地址映射关系实例:
上一篇:ARM9学习3-调试第一个ARM汇编程序
下一篇:S3C2410启动代码从ADSv1.2移植到KEIL For ARM uV4的方法
推荐阅读
史海拾趣
随着公司实力的不断增强,DDD公司开始积极拓展市场。公司针对不同领域的需求,推出了多种定制化产品,满足了客户的多样化需求。同时,DDD公司还积极参与国内外展览和交流活动,加强与同行的合作与交流,提高了公司的知名度和影响力。这些市场拓展策略的实施,为DDD公司的快速发展奠定了坚实基础。
硕颉科技不断推出创新产品,主打系列包括逆变器、LED驱动器、线性稳压器、AC/DC驱动器、MOSFET、视频编码器和解码器以及图像处理器等。这些产品广泛应用于消费电子领域,满足了市场对高质量电子产品的需求。同时,公司积极拓展销售网络,以台湾、韩国、中国大陆和日本等地区为主,逐步向全球市场扩张。
Dexter始终将技术创新作为企业发展的核心动力。公司不断投入研发资源,推动传感器技术的创新和发展。通过与高校、研究机构的合作,Dexter成功引入了多项新技术、新材料,并将其应用于产品中。这些创新产品不仅提高了传感器的性能和精度,还拓展了其应用领域。Dexter的创新精神引领了行业的发展方向,使其成为了行业的佼佼者。
为了进一步提升公司的竞争力和市场份额,Elite Enterprises积极寻求与行业内外的合作伙伴建立战略合作关系。公司与多家知名企业签订了长期合作协议,共同开发新产品、拓展新市场。此外,公司还与一些高校和研究机构建立了产学研合作关系,共同推动LED技术的创新和应用。
随着市场的竞争加剧,Elite Enterprises意识到只有不断提升产品品质和技术水平,才能在竞争中立于不败之地。因此,公司加大了对研发的投资,不断引进先进的生产设备和检测仪器,并严格把控原材料采购和生产流程。这些努力使公司的LED产品在光效、寿命和稳定性等方面均达到了行业领先水平。
在产品质量得到市场认可后,Elite Enterprises开始积极拓展国内外市场。公司参加了多个国际性的电子展会,展示了其高品质的LED产品,并成功吸引了众多客户的关注。同时,公司还加强了品牌建设,通过广告宣传和口碑传播等方式提高了品牌知名度和美誉度。
用EDN的51实验板,做了个4位八段数码管显示1234的数字,程序用汇编语言编写,通电后按实验田板上第一个按键开关启动程序执行。程序如下: ORG 0000H ;地址 0000H LJMP STAR0 ;转 STAR ORG 0 ...… 查看全部问答∨ |
看老兄翻译操劳,特发ADC-DAC应用设计宝典,中文的,不用您再费劲翻译了 [ 本帖最后由 leang521 于 2009-12-7 17:24 编辑 ]… 查看全部问答∨ |
本文讨论的四种常用FPGA/CPLD设计思想与技巧:乒乓操作、串并转换、流水线操作、数据接口同步化,都是FPGA/CPLD逻辑设计的内在规律的体现,合理地采用这些设计思想能在FPGA/CPLD设计工作种取得事半功倍的效果。 FPGA/CPLD的设计思想与技巧是一个非 ...… 查看全部问答∨ |
replyreload += \',\' + 373502;一些物联网有关的基本介绍。附上节选看大家是否有需要下载: Timson,如果您要查看本帖隐藏内容请回复 射频识别射频标签的数据量通常在几个字节到几千个字节之间。但是,有一个例外,这就是1比特射频标签。它 ...… 查看全部问答∨ |
可能版里已经有不少人问过这个问题了,但是可能具体到我自己的一些情况还是不太一样,所以还是单开一个帖子问问各位熟悉的人。 首先说一下我个人的情况,我自己是做系统(导弹上的电子设备)总体集成的,从射频到数字电路方面都有一些肤浅的了解, ...… 查看全部问答∨ |
延时问题 我在仿真时总是发现有延时,大概几个ns,当把仿真模式从timing换到functional时,出现错误。本人用的Quartus II9.0 网络版不知什么原因,请教各位大侠了,不胜感激!… 查看全部问答∨ |
我想把自己的一张320*240的图放到2440开发板上显示..可是发现我在把图转成*.c之后..在ADS里把代码复制到原来的图片代码那里取代了原来的代码位置..为什么make的时候会出现L62181E: error:Undefine symbol TQ_LOGO_320240(refered from LCD_TFT_.o ...… 查看全部问答∨ |
PADS9.3 画图。最后铺铜。鼠标右键 select shapes ,选中copper pour ,右键 flood , 出现proceed with flood? 选择是。然后,没有出现铺铜。折腾半天,终于发现。图中有copper cut out ,但 ...… 查看全部问答∨ |
U-boot下用tftp下载kernel,并加载kernel 本帖最后由 sdwuyawen 于 2014-7-20 14:04 编辑 S3C2416通过U-Boot启动后,U-Boot会自动执行bootcmd来加载内核。《君益兴开发板手册V2》第3.3.4节,把kernel烧写到nandflash的0x40000地址后,set bootcmd \'nand read.i c0008000 0 ...… 查看全部问答∨ |
EEWORLD大学堂----Atmel软件框架(ASF)入门(上) Atmel软件框架(ASF)入门(上):https://training.eeworld.com.cn/course/462更进一步了解Atmel软件框架,,一个产品源代码集合,如驱动、协议栈和触摸功能。学习创建项目,导入新驱动、DMA和中断等。… 查看全部问答∨ |