1.概述
时钟是单片机的脉搏,是单片机的驱动源,使用任何一个外设都必须打开相应的时钟。这样的好处是,如果不使用一个外设的时候,就把它的时钟关掉,从而可以降低系统的功耗,达到节能,实现低功耗的效果。每个时钟tick,系统都会处理一步数据,这样才能让工作不出现紊乱。
2.原理
首先,任何外设都需要时钟,51单片机,STM32,430等等,因为寄存器是由D触发器组成的,往触发器里面写东西,前提条件是有时钟输入。
51单片机不需要配置时钟,是因为一个时钟开了之后所有的功能都可以用了,而这个时钟是默认开启的,比如有一个水库,水库有很多个门,这些门默认是开启的,所以每个门都会出水,我们需要哪个门的水的时候可以直接用,但是也存在一个问题,其他没用到的门也在出水,即也在耗能。这里水库可以认为是能源,门可以认为是每个外设的使用状态,时钟可以认为是门的开关。
STM32之所以是低功耗,他将所有的门都默认设置为disable,在你需要用哪个门的时候,开哪个门就可以,也就是说用到什么外设,只要打开对应外设的时钟就可以,其他的没用到的可以还是disable,这样耗能就会减少。
在51单片机中一个时钟把所有的都包了,而stm32的时钟是有分工的,并且每类时钟的频率不一样,因为没必要所有的时钟都是最高频率,只要够用就行,好比一个门出来水流大小,我只要洗脸,但是出来的是和洪水一样涌出来的水,那就gg了,消耗能源也多,所以不同的时钟也会有频率差别,或者在配置的时候可以配置时钟分频。
拓展:为何要先配置时钟,再配置GPIO(功能模块)
所有寄存器都需要时钟才能配置,寄存器是由D触发器组成的,只有送来了时钟,触发器才能被改写值。
任何MCU的任何外设都需要有时钟,8051也是如此;STM32为了让用户更好地掌握功耗,对每个外设的时钟都设置了开关,让用户可以精确地控制,关闭不需要的设备,达到节省供电的目的。
51单片机不用配置IO时钟,只是因为默认使用同一个时钟,这样是方便,但是这样的话功耗就降低不了。例如,某个功能不需要,但是它还是一直运行。
stm32需要配置时钟,就可以把不需要那些功能的功耗去掉。当你想关闭某个IO的时候,关闭它相对应的时钟使能就是了,不过在51里面,在使用IO的时候是没有设置IO的时钟的,还有在STM32中,有外部和内部时钟之分。ARM的芯片都是这样,外设通常都是给了时钟后,才能设置它的寄存器(即才能使用这个外设)。STM32、LPC1XXX等等都是这样。这么做的目的是为了省电,使用了所谓时钟门控的技术。这也属于电路里同步电路的范畴:同步电路总是需要1个时钟。
3.详述STM32时钟
STM32时钟系统主要的目的就是给相对独立的外设模块提供时钟,也是为了降低整个芯片的耗能。
系统时钟,是处理器运行时间基准(每一条机器指令一个时钟周期)
乍一看很吓人,但其实很好理解,我们看系统时钟SYSCLK 的左边 系统时钟有很多种选择,而左边的部分就是设置系统时钟使用那个时钟源,
系统时钟SYSCLK 的右边,则是系统时钟通过AHB预分频器,给相对应的外设设置相对应的时钟频率
从左到右可以简单理解为:
各个时钟源—>系统时钟来源的设置—>各个外设时钟的设置
a. 时钟源
在STM32中,可以用内部时钟,也可以用外部时钟,在要求进度高的应用场合最好用外部晶体震荡器,内部时钟存在一定的精度误差。
准确的来说有4个时钟源可以选分别是HSI、LSI、HSE、LSE(即内部高速,内部低速,外部高速,外部低速),高速时钟主要用于系统内核和总线上的外设时钟。低速时钟主要用于独立看门狗IWDG、实时时钟RTC。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz,上电后默认的系统时时钟 SYSCLK = 8MHz,Flash编程时钟
①、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz
③、LSI是低速内部时钟,RC振荡器,频率为40kHz,可用于独立看门狗IWDG、实时时钟RTC
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体
PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。 通过倍频之后作为系统时钟的时钟源
( 网上有很多人说是5个时钟源,这种说法有点问题,学习之后就会发现PLL并不是自己产生的时钟源,而是通过其他三个时钟源倍频得到的时钟)
举个例子:Keil编写程序是默认的时钟为72Mhz,其实是这么来的:外部晶振(HSE)提供的8MHz(与电路板上的晶振的相关)通过PLLXTPRE分频器后,进入PLLSRC选择开关,进而通过PLLMUL锁相环进行倍频(x9)后,为系统提供72Mhz的系统时钟(SYSCLK)。之后是AHB预分频器对时钟信号进行分频,然后为低速外设提供时钟。
或者内部RC振荡器(HSI) 为8MHz /2 为4MHz 进入PLLSRC选择开关,通过PLLMUL锁相环进行倍频(x18)后为72MHz
b.系统时钟
系统时钟SYSCLK可来源于三个时钟源:
①、HSI振荡器时钟
②、HSE振荡器时钟
③、PLL时钟
最大为72Mhz
c.PLL 锁相环倍频(输入和输出)
PLL的输入3种选择:
①、PLLi = HSI /2
①、PLLi = HSE /2
③、PLLi = HSE
PLL的输出有15种选择: PLLout = PLLi Xn (n = 2…16)
d. USB时钟
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取(唯一的),可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
e.把时钟信号输出到外部
STM32可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。可以把时钟信号输出供外部使用。
f.系统时钟通过AHB分频器给外设提供时钟(右边的部分) 重点!!!
从左到右可以简单理解为:
系统时钟—>AHB分频器—>各个外设分频倍频器 —> 外设时钟的设置
右边部分为:系统时钟SYSCLK通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
①内核总线:送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②Tick定时器:通过8分频后送给Cortex的系统定时器时钟。
③I2S总线:直接送给Cortex的空闲运行时钟FCLK。
④APB1外设:送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给通用定时器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2-7使用。
⑤APB2外设:送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给高级定时器。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。
另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
需要注意的是,如果 APB 预分频器分频系数是 1,则定时器时钟频率 (TIMxCLK) 为 PCLKx。否则,定 时器时钟频率将为 APB 域的频率的两倍:TIMxCLK = 2xPCLKx。
APB1和APB2对应外设
F4系列:
APB2总线:高级定时器timer1, timer8、通用定时器timer9, timer10, timer11、UTART1,USART6
APB1总线:通用定时器timer2timer5、通用定时器timer12timer14、基本定时器timer6,timer7、UTART2~UTART5
F4系列的系统时钟频率最高能到168M
具体可以在 stm32f40x_rcc.h 中查看
或者通过 STM32参考手册搜索“系统架构”或者“系统结构”查看外设挂在哪个时钟下
g.RCC相关寄存器
Reset and clock control (RCC):
时钟配置,控制提供给各模块时钟信号的通断
以F1系列为例:
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x.h”中定义如下:
1059行->1081行。: 在这里插入代码片
typedef struct
{
vu32 CR; //HSI,HSE,CSS,PLL等的使能
vu32 CFGR; //PLL等的时钟源选择以及分频系数设定
vu32 CIR; // 清除/使能 时钟就绪中断
vu32 APB2RSTR; //APB2线上外设复位寄存器
vu32 APB1RSTR; //APB1线上外设复位寄存器
vu32 AHBENR; //DMA,SDIO等时钟使能
vu32 APB2ENR; //APB2线上外设时钟使能
vu32 APB1ENR; //APB1线上外设时钟使能
vu32 BDCR; //备份域控制寄存器
vu32 CSR;
} RCC_TypeDef;
RCC初始化
这里我们使用HSE(外部时钟),正常使用的时候也都是使用外部时钟
使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值 RCC_DeInit;
2、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟 RCC_HCLKConfig;
5、设置高速AHB时钟 RCC_PCLK2Config;
6、设置低速速AHB时钟 RCC_PCLK1Config;
7、设置PLL RCC_PLLConfig;
8、打开PLL RCC_PLLCmd(ENABLE);
9、等待PLL工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟 RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟 while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()
代码实现
对RCC的配置函数(使用外部8MHz晶振)
系统时钟72MHz,APH 72MHz,APB2 72MHz,APB1 32MHz,USB 48MHz TIMCLK=72M
void RCC_Configuration(void)
{
//----------使用外部RC晶振-----------
RCC_DeInit(); //初始化为缺省值
RCC_HSEConfig(RCC_HSE_ON); //使能外部的高速时钟
while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET); //等待外部高速时钟使能就绪
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer
FLASH_SetLatency(FLASH_Latency_2); //Flash 2 wait state
RCC_HCLKConfig(RCC_SYSCLK_Div1); //HCLK = SYSCLK
RCC_PCLK2Config(RCC_HCLK_Div1); //PCLK2 = HCLK
RCC_PCLK1Config(RCC_HCLK_Div2); //PCLK1 = HCLK/2
RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9); //PLLCLK = 8MHZ * 9 =72MHZ
RCC_PLLCmd(ENABLE); //Enable PLLCLK
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLLCLK is ready
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock
while(RCC_GetSYSCLKSource()!=0x08); //Wait till PLL is used as system clock source
//---------打开相应外设时钟--------------------
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); //使能APB2外设的GPIOA的时钟
}
h.时钟监视系统
STM32还提供了一个时钟监视系统(CSS),用于监视高速外部时钟(HSE)的工作状态。倘若HSE失效,会自动切换(高速内部时钟)HSI作为系统时钟的输入,保证系统的正常运行。
上一篇:STM32系统学习——RCC(使用HSE/HSI配置时钟)
下一篇:STM32 HAL 库学习笔记之-------(系统时钟配置)
推荐阅读
史海拾趣
Amphenol RF 是 Amphenol 公司的一个子公司,专注于设计、制造和销售射频连接器和组件,在电子行业中占据重要地位。以下是关于 Amphenol RF 公司发展的五个相关故事:
创立与早期发展:Amphenol RF 公司的历史可以追溯到20世纪40年代,当时被称为RF Connector Division。最初,公司主要致力于生产射频连接器和组件,为通信、航空航天、军事和工业市场提供射频连接解决方案。随着射频技术的发展和市场需求的增长,Amphenol RF 逐渐壮大成为射频连接器领域的重要参与者。
技术创新与产品多样化:Amphenol RF 公司在射频领域持续进行技术创新,并不断推出新型的射频连接器和组件产品。公司致力于提升产品的性能、可靠性和适应性,满足客户对高频射频应用的需求。除了传统的射频连接器,Amphenol RF 还推出了一系列新型产品,如微波连接器、同轴连接器、板对板连接器等,拓展了产品线的多样性。
客户合作与定制化解决方案:Amphenol RF 公司与客户建立了紧密的合作关系,共同开发定制化的射频连接器和组件解决方案。公司的工程团队与客户密切合作,根据客户的需求和应用场景,设计和制造符合特定要求的产品。这种定制化解决方案能够满足客户个性化的需求,为客户提供更加专业和完善的服务。
质量控制与认证标准:Amphenol RF 公司高度重视产品质量控制,并严格遵循国际质量管理体系标准。公司的生产工艺和质量管理体系符合ISO 9001质量管理体系认证标准,以确保产品质量的稳定性和可靠性。此外,Amphenol RF 公司的产品还通过了各种行业和应用领域的认证标准,如航空航天领域的MIL-SPEC标准等,确保产品符合行业标准和规定。
全球市场拓展与合作伙伴关系:除了在美国的生产基地外,Amphenol RF 公司还在全球范围内设有多个销售办事处和代理商网络,拓展了国际市场份额。公司与全球各种行业领先企业建立了长期稳定的合作关系,共同推动产品的创新和市场拓展。通过全球市场拓展和合作伙伴关系,Amphenol RF 公司不断扩大业务规模,增强了在射频连接器领域的市场竞争力。
这些故事展示了 Amphenol RF 公司从成立初期到如今在技术创新、产品多样化、客户合作与定制化解决方案、质量控制与认证标准以及全球市场拓展与合作伙伴关系等方面取得的重要进展。
C公司是一家专注于电子产品贸易的CIF公司。为了降低成本、提高效率,C公司积极整合全球供应链资源,与多家优质的电子产品生产商建立了长期合作关系。通过优化采购、生产和物流等环节,C公司成功降低了运营成本,提高了市场竞争力。
ELESTA GmbH的前身可以追溯到1952年ELESTA Elektrotechnik AG的成立。在成立初期,该公司就开始在电子领域进行一系列的创新和研发。到了1996年,ELESTA已经成功开发出光学传感器、测量和控制系统以及继电器等关键产品,这些产品奠定了公司在电子行业中的坚实基础。
1997年,ELESTA继电器有限公司正式成立,专注于制造符合IEC 61810-3标准的强制导向触点继电器。这一战略举措进一步巩固了ELESTA在电子继电器领域的领先地位,并为公司的长期发展奠定了坚实的基础。
DAICO公司深知品质的重要性,因此在生产过程中严格遵循国际标准和规范。公司不仅建立了完善的质量管理体系,还通过了多项国际认证,如ISO 9001等。这些认证证明了DAICO在产品质量和管理水平方面的实力,进一步提升了其在国际市场上的竞争力。
随着业务的不断发展,DAICO公司开始拓展全球市场。公司在全球范围内设立了多个办事处和生产基地,以便更好地服务客户。同时,DAICO还积极寻求与全球合作伙伴的合作共赢,共同推动电子行业的发展。通过与合作伙伴的紧密合作,DAICO在技术研发、市场开拓等方面取得了更加显著的成果。
摘 要:本文介绍X波段高稳定相干频率源倍频-放大组件的设计方法和实验结果\"为满足设计要求,对其电磁兼容性进行分析,给出了电磁兼容性设计和具体实施措施\"… 查看全部问答∨ |
|
1 硬件电路接口的设计 图1给出了液晶显示模块的硬件电路接口设计框图,该系统采用TI公司的TMS320F206芯片(以下简称F206),其内部带有4KB的FLASH存储器,可以根据系统需要外挂EEPROM作为外部程序存储区。 SED1335控制器是日本EPSON公司生产 ...… 查看全部问答∨ |
当我再次看《读大学究竟读什么?》这本书时。眼中又多了几分迷茫。像覃大哥BLOG上说的《职业规划:定体则无,大体须有》《专科生的发展之路》可能是我理解能力太差了吧到现在。我实在是不知道我应该怎样走。。。。。。 08年12月18日,我来到了北京 ...… 查看全部问答∨ |
请教各位高手, 形如: \\windows\\my music\\ <...> xxx.mp3 第一行显示当前的路径, 第二行单击返回上一级路径 第三行显示当前路径里的所有文件,如果是文件夹,单击则进入该文件 ...… 查看全部问答∨ |
急!在线等待!在evc 使用directshow时,用模拟器调试的时候,CoCreateInstance 失败! 怀疑是没有在模拟器上注册,然后我将\\Program Files\\Microsoft eMbedded C++ 4.0\\EVC\\WCE400\\TARGET\\X86\\REGSVRCE.EXE 拷贝到模拟器目录下,在命令行REGSVRCE.EXE msfilter.dll ,失败!提示loadlirary(msfilter.dll) failed 请各位大虾指 ...… 查看全部问答∨ |