高管洞察:高分辨率音乐需要高分辨率扬声器

发布者:EE小广播最新更新时间:2024-03-18 来源: EEWORLD作者: MIKE HOUSHOLDER,xMEMS 营销和业务发展副总裁关键字:高分辨率  音乐  扬声器 手机看文章 扫描二维码
随时随地手机看文章

所有关于高分辨率音乐传输和无损音频或空间音频格式的讨论都为时过早。很少有人能分辨出其中的区别——除非他们通过高分辨率、固态扬声器聆听。


Neil Young在给David Letterman展示音乐播放器PonoPlayer的时候,他发现了一些道理。2012年,这位传奇的创作型歌手对压缩的“有损”MP3音频感到失望。他希望创建一个平台,可以播放无损高分辨率(Hi-Res)的音乐,忠实于原始录音。他不仅支持高分辨率的数字内容,而且还拥有忠实播放这些内容的硬件——专门为该任务设计的设备。他知道,硬件对体验非常重要。


Young专注于数字播放链。当时他还无法想象一种新的扬声器技术的可能性。


然而,从那以后的几年里,高清音频的广泛采用是由软件驱动的——新的流媒体服务,新的音频格式。这是个本末倒置的错误。PonoPlayer音乐播放器从未广泛流行起来,但它仍然是创新的硬件,结合软件,最终将为大众提供无损的高分辨率音频体验。


事实是,很少有人能分辨出今天的标准数字音乐和公司高价出售的高清音乐之间的区别。除非他们通过高分辨率硬件来聆听高分辨率音乐。具体来说,通过高分辨率扬声器。


我们是如何实现的

image.png

Mike Housholder,xMEMS 营销和业务发展副总裁


20世纪90年代,当音乐传输走向数字化时,消费者选择的是便利性(MP3),而不是音质。谁能怪他们呢?他们可以快速下载专辑;将它们装入小型便携式播放器;通过各种各样令人眼花缭乱的移动设备来收听,包括小型无线扬声器和多功能的无线耳机。


数字文件必须经过压缩才能在互联网上传输,有效地存储在设备上,并以无线方式传输到耳机上。是的,流媒体音频有助于解决存储问题,但事实并非如此,为任何消费模式压缩数字音乐都意味着失去艺术家在录音中精心设计的许多细节——声音、细微差别、乐器。


但有些人注意到了其中的差异,例如Neil Young。现在,许多其他人也注意到了这一点。人们对高质量音频有了新的需求。根据高通公司2023年的声音状况报告,70%的消费者表示他们正在寻求高于mp3质量的音频,高于前一年的61%。此外,其他迹象表明,高质量音频发展势头强劲。


最近,黑胶唱片的销量已经超过了CD。观察人士表示,这种转变在一定程度上是由于怀旧情绪和消费者对黑胶唱片“温暖”声音的喜爱,但有一部分原因则是黑胶唱片能够传达更多音乐细节的能力。作为一种模拟媒体,黑胶不需要数字采样——这个过程会削弱原始声音。(有人曾引用Young的话说:“Steve Jobs是数字技术的先驱,但他回家后听的是黑胶唱片。”)


为了满足数字媒体对质量的要求,行业已经开始采用高分辨率音频,数字内容以更高的频率采样以保持保真度,并以更大的位深捕捉更多细节。问题是,消费者通过独立的或内置在耳机中的扬声器来收听高清音频,然而扬声器根本跟不上。它们无法准确地呈现出高分辨率的内容,因为这种扬声器的设计方式已经存在100多年了。


聆听高分辨率音频和普通音频之间的区别


这种内容和传输机制之间的脱节可以追溯到高清视频的曙光。当高清内容出现时,再加上可以为消费者播放的应用程序和服务,这无关紧要,因为早期的用户试图在非高清电视上观看高清内容。最近,当亚马逊(Amazon)等公司首次推出超高清(4K)视频内容目录时,大多数人只能在普通高清电视上观看,从而错过了4K像素所能显示的所有视觉细节。


image.png

Cowell模组(图片来源:xMEMS)


同样的事情也发生在高分辨率音频上。自从亚马逊、苹果和Tidal等新兴音乐服务公司开始提供高分辨率音频服务(有时比他们的标准服务收费更高)以来,公众就开始怀疑这是否值得溢价。研究人员甚至尝试确定普通消费者是否能分辨出普通音乐和高分辨率音乐的区别,发现“区分标准质量音频和高分辨率音频的能力很小,但具有统计学意义。”


事实上,据估计,大约只有5%的消费者能听出其中的区别。但是,如果他们通过能够更忠实地呈现音乐的扬声器来聆听高分辨率音乐呢?有迹象表明,大多数人都能听到他们错过的细节。


绝大多数人都是通过头戴式耳机和耳塞听音乐的。在2015年音频工程协会的一次会议上,甚至有报道称,85%的人在家中使用耳机听音乐,而不是在旅途中。所有这些耳机中的微型扬声器都基于传统架构,包括线圈、磁铁和塑料振膜。这种架构不仅没有足够的高性能来呈现高采样率、高分辨率的音频,而且也不够稳定,无法可靠、忠实地完成这些工作。


为了让所有人都能感受到高分辨率音频,应该通过专门为所需保真度而设计的固态硅基微型扬声器来播放音频。


专为高分辨率而设计的固态扬声器


image.png

Montara Plus耳机(图片来源:xMEMS)


这种固态音频器件并不是什么新鲜事。这种转变始于2007年左右,当时作为固态微机电系统(MEMS)设计的麦克风只占市场的5%。而到2022年,这一比例增长为72%。xMEMS的工程师们正在引领扬声器器件的类似转变。


通过使用薄膜压电技术(将电能转换为机械能的材料)作为扬声器的致动器,取代线圈和磁铁,加上硅作为扬声器振膜,取代常用的塑料或纸振膜,xMEMS工程师已经在芯片上首次创造了一种固态扬声器,其尺寸和重量仅为类似线圈扬声器的一小部分。


固态扬声器有几个关键特性,使其能够独特地呈现高分辨率音乐。首先,它们的机械速度比线圈扬声器快,响应速度是传统架构的150倍。这对于能够呈现高比特率至关重要,因此听众可以真正听到原始录音的增强细节,清晰度和乐器分离度。


它们还可以最大限度地减少相移,相移是不同振幅的不同声波组合的结果。这会改变音频。传统的扬声器架构容易发生180度的相移,使声音染色,使其不那么自然。固态扬声器具有平坦相位(不超过2度)的能力,从而忠实地再现原始音频。


image.png

Cowell(图片来源:xMEMS)


此外,由于固态扬声器是通过半导体工艺制造的,因此它们在扬声器之间表现出高度的相位一致性。当你把一个固态扬声器放在左耳塞里,另一个放在右耳塞里,它们的相位会完美匹配,以实现最大的清晰度。


最后,固态扬声器不会出现分割振动,当扬声器振膜被推到极限时就会发生这种失真。硅膜片的硬度是纸质或塑料膜片的95倍,因此能更好地保持其形状,产生清晰、细腻的声音。为了享受高清内容的清晰度,通过专为清晰度设计的扬声器进行聆听是很重要的。


最终,xMEMS工程师发现,基于数百名xMEMS耳塞听众的反馈,固态高分辨率扬声器可以改善感知的音频质量。有证据表明,至少有80%的人使用固态MEMS扬声器耳机时可以听到最喜欢的歌曲中的细节,以前在通过带有传统线圈扬声器的耳塞收听时却没有注意到。虽然它们的设计特点非常适合从高分辨率音频中获得最大的效果,但固态扬声器也可以改善标准音乐的体验,以及新兴格式,如空间音频。


Neil Young表示,他想“拯救我过去50年来一直在实践的艺术形式”。他当时不知道的是,扬声器的创新将是关键。要求更好听的内容是一个开始。固态扬声器标志着涅槃。


关键字:高分辨率  音乐  扬声器 引用地址:高管洞察:高分辨率音乐需要高分辨率扬声器

上一篇:纳芯微推出NSI22C1x系列隔离式比较器,打造更可靠的工业电机驱动系统
下一篇:纳芯微通用运放系列添新品:低压NSOPA8xxx为汽车与工业应用注入新动力

推荐阅读最新更新时间:2024-11-09 14:17

扬声器的发生原理分析
  完整的扬声器会包括几个部份:喇叭单体、分频网络、音箱这三大区块,我们就分门别类来讨论。首先就是喇叭单体,基本上来说就是将麦克风的工作原理倒过来,以电气讯号输入在磁力系统里音圈上的线圈,线圈会随着讯号产生磁性变化,而带动音圈在磁力系统中以声音的波形运动。音圈再推动喇叭单体的振膜或音盆,以推动空气产生音波,声音就这样发出来了。   说来确实并不困难,不过要将电气讯号尽可能地依原来应有的波形、响应等低失真的情况发出声音就是另外一回事了。音频范围由低频(20Hz)到高频(18kHz)超过了十个八度音程,单一喇叭单体要能涵盖这个音频范围,在音量方面就会受到结构的限制。不过现在全音域单体技术成熟发达,市面上已经有不少性能还不错的全音域
[嵌入式]
华星光电高分辨率屏下摄像头技术曝光
5月7日消息,博主@数码闲聊站爆料,华星光电正在测试全新屏下摄像头方案,可以实现无刘海、无挖孔的同时做到高分辨率,而且支持高频PWM调光。 目前市面上的屏下摄像头方案采用的是“一驱多”思路,将摄像头区域设置为一个像素电路驱动多个OLED像素单元,减少金属走线的面积占比,增加FDC(Full Display with Camera)区可见光透过率以满足拍照要求——即摄像头区域的减少驱动电路的方案,这也会使FDC区域可显示的真实像素信息减少。 相比之下,华星光电的全新屏下摄像头方案是1驱1像素电路,可以实现在不降低摄像头区域的像素密度、不减少像素驱动电路的基础上,通过优化摄像头区域像素空间排列方式及膜层堆叠设计,提升可见光透过率,
[手机便携]
华星光电<font color='red'>高分辨率</font>屏下摄像头技术曝光
8051/2单片机基础 实现开关,驱动2位的共阳极数码管显示小数,驱动喇叭播放音乐
1. 实现开关,开关2次后,LED闪烁4次 2. 实现驱动共阳极数码关显示 3.1 3. 驱动喇叭播放 ,dao,re,mi,fa,sao,la,xi C代码: /** * 8051 DEMO 2 * 1. 实现开关,开关2次后,LED闪烁4次 * 2. 实现驱动共阳极数码关显示 3.1 * 3. 驱动喇叭播放 ,dao,re,mi,fa,sao,la,xi * 8051 规定中断号如下 * INT0 中断号 0 * INT1 中断号 2 * T0 中断号 1 * T1 中断号 3 * 串口 中断号 4 */ #include REG52.H #include intrins.h //LED sbit
[单片机]
8051/2单片机基础 实现开关,驱动2位的共阳极数码管显示小数,驱动喇叭播放<font color='red'>音乐</font>
基于扬声器的深度神经网络方案
完整的扬声器会包括几个部份:喇叭单体、分频网络、音箱这三大区块,我们就分门别类来讨论。首先就是喇叭单体,基本上来说就是将麦克风的工作原理倒过来,以电气讯号输入在磁力系统里音圈上的线圈,线圈会随着讯号产生磁性变化,而带动音圈在磁力系统中以声音的波形运动。音圈再推动喇叭单体的振膜或音盆,以推动空气产生音波,声音就这样发出来了。 说来确实并不困难,不过要将电气讯号尽可能地依原来应有的波形、响应等低失真的情况发出声音就是另外一回事了。音频范围由低频(20Hz)到高频(18kHz)超过了十个八度音程,单一喇叭单体要能涵盖这个音频范围,在音量方面就会受到结构的限制。不过现在全音域单体技术成熟发达,市面上已经有不少性能还不错的全音域单体供货
[嵌入式]
基于<font color='red'>扬声器</font>的深度神经网络方案
毕业设计| STM32F103全彩FFT音乐频谱+LED年历闹钟显示
工作原理 上面演示的音乐频谱工作原理: Image 通过电脑,手机等外部设备3.5mm耳机孔,输出音频信号,然后经过继电器模块的音源选择后,继电器模块的输出分为两路:一路给有源音响播放音乐;一路经过音频信号调理电路,输入到STM32单片机的引脚进行采样和AD转换后,由程序进行FFT变换,并将FFT变换结果的幅值谱显示在LED全彩显示屏上。 语音播放模块用于播放闹钟语音报时及闹铃音乐。默认情况下继电器模块选择外界设备的音源,当闹钟时间到时,继电器动作切换为语音模块音源。 硬件构成 1)STM32F103核心板 2)全彩LED显示屏单元板 P4 64*32 (16扫,75接口)满足此条件的LED屏都行,大家可以上某宝
[单片机]
毕业设计| STM32F103全彩FFT<font color='red'>音乐</font>频谱+LED年历闹钟显示
听筒和扬声器的区别
  听筒   听筒是电话、对讲机、手机等通讯工具传送声音的一种配件,是扬声器的一种,但一般不叫扬声器。一般这个词都用于描述电子产品传送声音的零件。如:手机、对讲机,等等。   话筒和听筒里面都会有一个小薄膜, 话筒里的薄膜起到人的耳朵里鼓膜的作用, 你对它说话,薄膜会振动,薄膜连接着一个小线圈(注意:这个线圈是会随薄膜的振动而改变位置的),话筒里还有一小块固定的永磁铁(固定在话筒外壳上)。 薄膜是有弹性的,一般既起到振动的作用,也起到把线圈拉回初始位置的作用。薄膜一头固定在话筒外壳上,一头连着线圈。   当薄膜振动时,带动线圈振动,线圈和永磁铁的相对位置改变,这使得穿过线圈的磁场发生变化, 磁场变化了会在线圈中产生感应电动势,
[嵌入式]
听筒和<font color='red'>扬声器</font>的区别
基于DDS器件设计的高精度、高稳定度、高分辨率射频正弦波信号发生器
1 引言 现代通信技术、雷达技术、电子测量以及一些光电应用领域都要求高精度、高稳定度、高分辨率的射频正弦波信号。有别于传统的模拟射频振荡器方式,直接数字频率合成器DDS(Direct Digital Synthesizer)有着显着的优点:频率稳定度高、频率精度高、易于控制。 2 系统工作原理 直接数字合成技术(DDS)是一种有别于传统模拟正弦信号发生技术的全新数字控制技术,其基本原理如图1所示。 正弦波信号y=sinωt是一个非线性函数。要直接合成一个正弦波信号,首先应将函数y=sinx进行数字量化,然后以x为地址,以y为量化数据,依次存人波形存储器。DDS使用相位累加技术控制波形存储器的地址,在每一个基准时钟周期,都把一个
[单片机]
基于DDS器件设计的高精度、高稳定度、<font color='red'>高分辨率</font>射频正弦波信号发生器
如何实现逼真的音场音频
如今到处都可以听到录制的声音,我们几乎不会刻意想到它们。这些声音从智能手机、智能音箱、电视、收音机、光盘播放机和汽车音响系统倾泻而出,持久而愉快地出现在我们的生活中。2017年,尼尔森市场调研公司的一项调查显示,约90%的美国人经常听音乐,每周平均听32个小时。 在这自由流畅的愉悦背后,庞大的产业推动技术实现长远的目标:最大可能真实地再现声音。从19世纪80年代爱迪生的留声机和喇叭扬声器开始,一代又一代工程师追求这一理想,发明和开发了无数项技术:真空三极管、电动式扬声器、盒式磁带留声机、数十种不同拓扑结构的固态放大器电路、静电扬声器、光盘、立体声音响和环绕立体声音响。在过去的50年里,音频压缩和流媒体等数字技术改变了音乐产业。
[嵌入式]
如何实现逼真的音场音频
小广播
最新模拟电子文章

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved