历史上的今天

今天是:2024年08月25日(星期日)

正在发生

2021年08月25日 | 过采样插值DAC

发布者:EE小广播 来源: EEWORLD作者: ADI公司  Walt Kester关键字:过采样  数字滤波  ADC  DAC 手机看文章 扫描二维码
随时随地手机看文章

简介


过采样和数字滤波有助于降低对ADC前置的抗混叠滤波器的要求。重构DAC可以通过类似的方式运用过采样和插值原理。例如,数字音频CD播放器常常采用过采样,其中来自CD的基本数据更新速率为44.1 kSPS。早期CD播放器使用传统的二进制DAC,并将“0”插入并行数据中,从而将有效更新速率提高到基本吞吐速率的4倍、8倍或16倍。4×、8×或16×数据流通过一个数字插值滤波器,产生额外的数据点。高过采样速率将镜像频率移动到更高位置,从而可以使用较为简单、成本更低、过渡带更宽的滤波器。此外,由于存在处理增益,信号带宽内的SNR也会提高。Σ-Δ型DAC架构使用高得多的过采样速率,将这一原理扩展到极致,因而在现代CD播放器中颇受欢迎。


同样的过采样和插值原理也可用于通信领域的高速DAC,以便降低对输出滤波器的要求,并利用处理增益提高SNR。


重构DAC的输出频谱


重构DAC的输出可以表示为一系列矩形脉冲,其宽度等于时钟速率的倒数,如图1所示。


 image.png

图1:显示镜像和sin (x)/x滚降的无滤波DAC输出


请注意,在奈奎斯特频率fc/2,重构信号幅度降低3.92 dB。如果需要,可以使用一个反sin(x)/x滤波器来补偿此效应。基波信号的镜像作为采样函数的结果出现,并且也通过sin(x)/x函数衰减。


过采样插值DAC


过采样/插值DAC的基本原理如图2所示。N位输入数据字以速率fc接收。数字插值滤波器以等于过采样频率Kfc的时钟速率工作,并插入额外的数据点。对输出频谱的影响如图2所示。在奈奎斯特采样频率下(A),对模拟抗镜像滤波器的要求可能相当高。通过过采样和插值,可以大大降低对该滤波器的要求,如(B)所示。此外,量化噪声分布在比原始信号带宽更宽的区域内,因而信噪比也会有所提高。原始采样速率加倍时(K = 2),SNR提高3 dB;K = 4时,SNR提高6 dB。早期CD播放器利用了这一点,一般能将数字滤波器中的算法精确到N位以上。如今,CD播放器中的多数DAC都是Σ-Δ型。


关于过采样/插值DAC原理的最早期文献有Ritchie、Candy和Ninke于1974发表的论文(参考文献1),以及Mussman和Korte于1981年(申请日期)申请的专利(参考文献2)。


 image.png

图2:过采样插值DAC


下例使用一些实际的数值来说明过采样原理。假设以30 MSPS的输入字速率驱动一个传统DAC(参见图3A),DAC输出频率为10 MHz。在30 – 10 = 20 MHz时的镜像频率成分必须通过模拟抗混叠滤波器进行衰减,滤波器的过渡带始于10 MHz,止于20 MHz。假设必须将镜像频率衰减60 dB,则在10 MHz到20 MHz(一个倍频程)的过渡带内,滤波器必须从10 MHz的通带转折频率变为60 dB的阻带衰减。滤波器每个极点提供大约6 dB/倍频程的衰减。因此,为了提供所需的衰减,至少需要10个极点。过渡带越窄,则滤波器越复杂。


 image.png

图3:fo = 10 MHz时的模拟滤波器要求:(A) fc = 30 MSPS,(B) fc = 60 MSPS


假设我们将DAC更新速率提高到60 MSPS,并在各原始数据采样点之间插入“0”。现在,并行数据流为60 MSPS,但我们必须确定零值数据点的值,这通过将添加0的60 MSPS数据流经由数字插值滤波器处理来实现,由滤波器计算额外的数据点。2× 过采样频率下的数字滤波器响应曲线如图3B所示。模拟抗混叠滤波器过渡区现在是10 MHz到50 MHz(第一镜像出现在2fc – fo = 60 – 10 = 50 MHz)。该过渡区稍大于2个倍频程,说明5或6极点滤波器即足够。


AD9773/AD9775/AD9777(12-/14-/16-bit)系列发射DAC (TxDAC®)是2×、4×或8×可选过采样插值双通道DAC,图4为其简化框图。这些器件能够处理最高达160 MSPS的12/14/16位输入字速率,最大输出字速率为400 MSPS。假设输出频率为50 MHz,输入更新速率为160 MHz,过采样比为2,则镜像频率出现在320 MHz – 50 MHz = 270 MHz,因此模拟滤波器的过渡带为50 MHz至270 MHz。如果没有2倍过采样,则镜像频率出现在160 MHz – 50 MHz = 110 MHz,滤波器过渡带为50 MHz至110 MHz。


 image.png

图4:过采样插值TxDAC®的简化框图


还应注意,过采样插值DAC支持较低的输入时钟频率和输入数据速率,因而它在系统内产生噪声的可能性要低得多。


Σ-Δ型DAC


Σ-Δ型DAC的工作原理与Σ-Δ型ADC非常相似,但在Σ-Δ型DAC中,噪声整形功能是利用数字调制器实现的,而不是利用模拟调制器。


与Σ-Δ型ADC不同,Σ-Δ型DAC大多是数字式(参见图5A)。它由一个“插值滤波器”(一个数字电路,以低速率接受数据,以高速率插入0,然后应用数字滤波器算法并以高速率输出数据)、一个Σ-Δ型调制器(它对信号是低通滤波器,对量化噪声则是高通滤波器,并将由此产生的数据转换为高速位流)和一个1位DAC组成,该DAC的输出在等值正负基准电压之间切换。输出在外部模拟低通滤波器(LPF)中滤波。由于过采样频率很高,该LPF的复杂度远低于传统奈奎斯特采样频率下的情况。

 

 image.png

图5:Σ-Δ型DAC


Σ-Δ型DAC可以使用多位,这就是图5B所示的“多位”架构,其原理与之前讨论的插值DAC相似,不过增加了Σ-Δ型数字调制器。


过去,由于n位内部DAC的精度要求(它虽然只有n位,但必须具有最终位数N位的线性度),多位DAC难以设计。然而,AD195x系列音频DAC利用专有“数据加扰”技术(称为“数据定向加扰”)解决了这一问题,在所有音频规格方面都能提供出色的性能。


图6所示为AD1955 多位Σ-Δ型音频DAC。 AD1955同样使用数据定向加扰技术,支持各种DVD音频格式,并具有非常灵活的串行端口。THD + N典型值为110 dB。

 

 image.png

图6:AD1955多位Σ-Δ型音频DAC


总结


在现代数据采样系统中,过采样结合数字滤波是强有力的工具。我们已经看到,同样的基本原理既适用于ADC,也适用于重构DAC。主要优点是对抗混叠/抗镜像滤波器的要求得以降低,另一个优点是SNR因处理增益而提高。


Σ-Δ型ADC和DAC架构是过采样原理的终端扩展,同时也是大多数语音频带和音频信号处理数据转换器应用的首选架构。


 参考文献


1.     G. R. Ritchie, J. C. Candy, and W. H. Ninke, "Interpolative Digital-to-Analog Converters," IEEE Transactions on Communications, Vol. COM-22, November 1974, pp. 1797-1806.(最早的关于过采样插值DAC的论文之一)。


2. H. G. Musmann and W. W. Korte, "Generalized Interpolative Method for Digital/Analog Conversion of PCM Signals," U.S. Patent 4,467,316, filed June 3, 1981, issued August 21, 1984.(关于插值DAC的描述)。


3. Robert W. Adams and Tom W. Kwan, "Data-directed Scrambler for Multi-bit Noise-shaping D/A Converters," U.S. Patent 5,404,142, filed August 5, 1993, issued April 4, 1995.(描述采用“数据加扰”技术的分段音频DAC)。


4. Y. Matsuya, et. al., "A 16-Bit Oversampling A/D Conversion Technology Using Triple-Integration Noise Shaping," IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 6, December 1987, pp. 921-929.


5. Y. Matsuya, et. al., "A 17-Bit Oversampling D/A Conversion Technology Using Multistage Noise Shaping," IEEE Journal of Solid-State Circuits, Vol. 24, No. 4, August 1989, pp. 969-975.


6. Walt Kester, Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3, Chapter 3.另见The Data Conversion Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7841-0, Chapter 3.



© 2009 Analog Devices, Inc 保留所有权利。对于客户产品设计、客户产品的使用或应用,以及因ADI公司协助而可能导致的任何侵权,ADI公司概不负责。所有商标和标志均属各自所有人所有。ADI公司应用与开发工具工程师提供的信息准确可靠,但ADI公司对其技术指南所提供内容的技术准确性和时效性不承担责任。


关键字:过采样  数字滤波  ADC  DAC 引用地址:过采样插值DAC

上一篇:第一页
下一篇:SAR ADC的隔离

推荐阅读

随着人们生活水平的不断提高,对产品服务的要求也发生了变化,消费端开始升级并带来新的挑战和机遇。而服务机器人似乎为新的时代而生,逐步开始进入社会,进入家庭,服务于平民大众。在2018世界机器人大会上,北京康力优蓝机器人科技有限公司创始人兼首席执行官刘雪楠认为,服务机器人最大的市场是面向家庭的服务机器人,如果从商业价值的角度来讲,最大的...
现如今,人类与机器人的关系,已从过去的竞争变成了现在的协作,也就是从竞争、共存、协作到未来的共事。例如在一些3C工厂,工人一天八到十个小时重复站在那里去做同一件工作,那么对这种工作,我们希望他可以完全被自动化替代。同时,利用人类的认知、适应或者创造等能力去做更加有意义的工作。 而过去几年中,火得不能再火的人工智能技术,他与机器人...
『Cybertruck』新的雨刮系统与传统的雨刮器工作原理不同,并非简单的以固定轴为中心旋转进行清扫,而是将一条磁悬浮导轨安装于前风挡玻璃下方,导轨上的缠绕电磁线圈带有一个金属块,有一根雨刮臂与其相连。当开启雨刮功能时,雨刮臂将调整至与电磁导轨相垂直的角度,在金属块通电后通过电流的控制在导轨上进行往复运动,清扫雨水。『专利图纸』据悉,这项...
好不容易继续来搞搞这个单片机,虽然出了好多年,但是被ST打得体无完肤.就有LCD控制器,SDRAM这个优势来说,基本上已经到了老的的程度了.而且用起这个LCD,好像也不是特别的复杂,原来以为很麻烦的,因为手册说的什么专用DMA啊,专用图形加速啊.在调试过程中出现了好多次的闪屏,差点以为是自己的板子画得有问题,不过后来发现是总线占用过长,需要优化一下.开始做LCD...

史海拾趣

问答坊 | AI 解惑

C51步步学笔记

Neoic论坛的一篇很不错的帖子,详细讲述了如何使用C语言开发51系列单片机。具体内容见如下链接: C51步步学笔记…

查看全部问答∨

FPGA设计时序收敛

FPGA设计时序收敛1、2…

查看全部问答∨

众多NEC电子的中文资料

本帖最后由 paulhyde 于 2014-9-15 09:29 编辑 众多NEC电子的中文资料,大家快来发掘~~NEC电子提供了众多NEC电子的中文资料,大家快来发掘~~NEC电子提供了很多单片机的中文资料,大家可以自己去发掘适合自己的学习内容^______^ 主页:http://www. ...…

查看全部问答∨

wince跟windows mobile有啥关系?

wince跟windows mobile有啥关系?…

查看全部问答∨

rc桥式振荡,没有波形输出 为什么?

rc桥式振荡,没有波形输出 为什么? 用的是OP07  反馈选的电阻式473和103 振荡回路选的电容式104p 电阻是393 输出无波形…

查看全部问答∨

熟悉TCPMP 播发器开放式软件的朋友看过来!

本人想简单修改一下TCPMP播发软件的UI界面,用EVC4.0编译时出现一堆.h找不到,上百个错误.有经验的朋友是否可以指点迷路?说个1,2,3,4.多谢!…

查看全部问答∨

vc2005开发智能设备程序,如何拷贝一个ocx到模拟器,并且在模拟器注册该ocx?

vc2005开发智能设备程序,如何拷贝一个ocx到模拟器,并且在模拟器注册该ocx?…

查看全部问答∨

我的目标机刷屏很慢,不知道是怎么回事?

我的目标机刷屏很慢,不知道是怎么回事? 基本上是一行一行的刷,等的人心都碎了!请大侠们帮忙! 我用的是VxWorks5.5,Tornado2.2的版本!…

查看全部问答∨

C2664错误(EVC环境下)

wsprintf(sTmp,"%d.%d.%d.%d",(IP&0xFF),((IP>>8 ) & 0xFF),((IP>>16) & 0xFF),((IP>>24) & 0xFF)); m_ip_combo_ctrl.AddString(sTmp); 这里出现了两个错误: error C2664: \'wsprintfW\' : cannot convert parameter 1 ...…

查看全部问答∨
小广播
最新模拟电子文章

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved