电信号链有多种形式。它们可以由不同的电气元件组成,包括传感器、执行器、放大器、模数转换器(ADC)、数模转换器(DAC),甚至微控制器。整个信号链的准确性起着决定性的作用。为了提高准确性,首先必须识别并尽量减小每个信号链中的各个误差。由于信号链的复杂性,这种分析将会是一项艰巨的任务。本文介绍了一种精密数模转换器(DAC)的信号链误差预算计算工具。本文将描述与DAC连接的元件的单项误差影响。最后,本文将逐步演示如何使用该工具来识别和纠正这些问题。
精密数模转换器(DAC)误差预算计算器的计算精准,易于使用,可以帮助开发人员为特定应用选择最合适的元件。由于数模转换器(DAC)通常不会单独出现在信号链中,而是连接到基准电压和运算放大器(例如作为参考缓冲器),因此必须重视和总结这些额外的元件以及它们的各个误差。为了更好地理解这个概念,我们首先看看主要元件的单项误差影响,如图1所示。
图1.数模转换器(DAC)信号链的主要元件
基准电压有四个主要的误差影响。第一个与初始精度(初始误差)有关,表现在25℃(指定温度)的生产测试中测量的输出电压不稳定。此外,还有与温度系数相关的误差(温度系数误差)、负载调节误差和线路调节误差。初始精度和温度系数误差对总误差影响最大。
在运算放大器中,输入失调电压误差和电阻的阻值误差影响最大。输入失调电压误差是指为了获得零电压输出而在输入端强行施加的很小的电压差。增益误差是用于设置闭环增益的相应电阻的阻值误差引起的。其他误差由偏置电流、电源抑制比(PSRR)、开环增益、输入失调电流、CMRR失调和输入失调电压漂移引起。
对于数模转换器(DAC)本身,数据表中给出了各种类型的误差,例如积分非线性(INL)误差,它与理想输出电压和给定输入代码测量的实际输出电压之差有关。其他误差类型有增益误差、失调误差和增益温度系数误差。有时将它们组合在一起形成总不可调整误差(TUE)。TUE和所有测量输出DAC误差有关,即INL、失调和增益误差,以及在电源电压和温度范围内的输出漂移。
由于不同的误差源通常不相关,计算信号链中总误差的最精确方法是统计平方公差法:
收集各个元件的误差通常是一项繁琐的任务,现在我们可以使用误差预算计算器来简化这项工作,得到同样精确的计算结果。
图2.ADI误差预算计算器中误差影响的表示
使用精密数模转换器(DAC)误差预算计算器的步骤
首先,使用误差预算计算器,从三种数模转换器(DAC)类型中进行选择:电压输出DAC、乘法DAC和4 mA ~ 20 mA电流源DAC。接下来,设置误差计算所需的温度范围和电源电压纹波,后者对PSRR误差将起决定性的作用。输入这些值后,计算器将生成一个图表,显示信号链中每个元件的各个误差影响,如图2所示。
这个示例中的总误差主要受基准电压的影响。通过使用更精确的参考模块可以改进这一信号链。
数模转换器(DAC)的集成电阻负责内部反相放大器的比较,从而提高精度,对数模转换器(DAC)的总误差起决定性的作用。在没有集成电阻或内部反相放大器的数模转换器(DAC)中,这些参数可以单独设定,如图2所示。
误差预算计算器可靠且易于使用,使创建精密数模转换器(DAC)信号链和快速评估设计权衡变得更容易。
作者简介
Thomas Brand于2015年加入德国慕尼黑的ADI公司,当时他还在攻读硕士。毕业后,他参加了ADI公司的培训生项目。2017年,他成为一名现场应用工程师。Thomas为中欧的大型工业客户提供支持,并专注于工业以太网领域。他毕业于德国莫斯巴赫的联合教育大学电气工程专业,之后在德国康斯坦茨应用科学大学获得国际销售硕士学位。联系方式:thomas.brand@analog.com。
上一篇:学子专区—ADALM2000实验:源极跟随器(NMOS)
下一篇:最后一页
推荐阅读
史海拾趣
随着产品线的不断扩展,AOTC开始进军国际市场。公司积极与各大电子厂商合作,将光电转换器集成到各类电子产品中,从而实现了市场份额的快速增长。同时,公司还不断投入研发,对产品进行升级迭代,以满足市场不断变化的需求。
为了进一步提高竞争力,AOTC开始寻求与上下游企业的合作。通过与原材料供应商、生产设备制造商以及销售渠道商建立紧密的合作关系,公司成功实现了产业链的整合,降低了生产成本,提高了生产效率。此外,公司还与其他科技公司开展战略合作,共同研发新产品,拓展新市场。
在创立初期,Ericsson Power Modules就展现出了强大的技术创新能力。公司团队通过深入研究电源技术、电路板应用和系统知识,成功开发出了一系列高性能、高效率的电源模块产品。其中,DC-DC转换器、中级和先进总线转换器、POL稳压器等产品因其卓越的性能和稳定性,在市场上赢得了广泛好评。这些技术突破和产品创新为Ericsson Power Modules的后续发展奠定了坚实的基础。
在2010年4月的上海张江高科技园区,一群志同道合的工程师和创业者聚集在一起,共同创立了上海智浦欣微电子有限公司。他们怀揣着对模拟及数模混合IC技术的深厚理解和热爱,立志要在消费类电子市场占据一席之地。起初,公司面临着资金紧张、技术挑战和市场压力等多重困难,但团队成员凭借对技术的执着和对市场的敏锐洞察,逐步攻克难题,研发出了几款性能优越的音频放大器和电源管理产品,为公司赢得了初步的市场认可。
在技术创新的基础上,重庆平洋电子有限公司积极拓展市场,不断提升品牌影响力。公司积极参与国内外各种电子展览和交流活动,与多家知名企业建立了战略合作关系。同时,公司还注重产品质量和售后服务,赢得了客户的信任和好评。随着品牌知名度的提升,公司的市场份额也逐年增长。
随着全球化趋势的加强,CTS公司开始积极拓展国际市场。公司在全球范围内设立了多个生产基地和销售网络,以便更好地服务全球客户。同时,CTS还加强了与国际知名企业的合作,共同推动电子行业的发展。
S3c610 Codec移植的工作经验总结[bootloader级] 1. S3C6410与WM9713的I2S,AC97,PCM相比较: 1.I2S,AC97,PCM是不同的,各是各的,三者时序不同,要双方通信,必须要是 同一种时序,要么均是I2S,要么均是AC97,要么均是PCM 2.S3C6410的I2S,AC97,PCM复用同一组Pin脚,但同一时间只能用一种类型 ...… 查看全部问答∨ |
|
前几天拿到一个mini2440,板子很精致。400M的主频,在跑uCos2的时候,发现速度很慢,可是却不知道为什么。怀疑是cache没有利用起来,可是我对于MMU也不是很明白,有没有点建议? void MMU_Init(void) { int i,j; / ...… 查看全部问答∨ |
|
用GDI绘图,非常闪砾,想用双缓冲实现,可发现网上搜到的双缓冲例子中用到的类,在wince下都没有,请问有人做过双缓冲绘图吗?如何实现,希望可以给出关键代码,谢谢… 查看全部问答∨ |
|
Firmware Lib的应用及C++工程建立过程杂谈Firmware Lib下在地址:http://www.st.com/stonline/products/support/micro/files/um0427.zipFirmware Lib用户手册下载地址:http://www.st.com/stonline/products/literature/um/134 ...… 查看全部问答∨ |
有没有一款好的STM8/32的烧写仿真器,大家推荐一下。 我先前有的是ST LINK ,用了快一年,用坏了4个ST LINK,有什么替代的东西吗? 再问一下,STM8还有什么烧写器?… 查看全部问答∨ |
本人初学avr,学到数码管。我学习板上数码管位选是由74ls138控制,段选是由74hc595控制。。下面是本人写的程序,,目的是让第二个数码管显示1,从中午一直看到现在不知道到底错在哪!大侠求助啊!!! #include<iom16v.h>#incl ...… 查看全部问答∨ |
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知