插电式混合动力/电动汽车(xEV)包含一个高压电池子系统,可采用内置的车载充电器(OBC)或外部的充电桩进行充电。充电(应用)要求在高温环境下具有高电压、高电流和高性能,开发高能效、高性能、具丰富保护功能的充电桩对于实现以尽可能短的充电时间续航更远的里程至关重要。常用的半导体器件有IGBT、超结MOSFET和碳化硅(SiC)。安森美半导体为电动汽车OBC和直流充电桩提供完整的系统方案,包括通过AEC车规认证的超级结MOSFET、IGBT、门极驱动器、碳化硅(SiC)器件、电压检测、控制产品乃至电源模块等,支持设计人员优化性能,加快开发周期。本文将主要介绍用于电动汽车直流充电桩的超级结MOSFET和具成本优势的IGBT方案。
电动汽车充电级和里程
充电桩按充电能力分类,以处理不同的用例场景。一级充电桩是120 V、输出15 A或20 A 的交流充电桩,每充电1小时增加约4至6英里里程。二级充电功率有3.3 kW、6.6 kW、9.6 kW、19.2 kW四种功率级别,适用于输出电流分别达20 A、20 A、50 A、100 A的240 V交流电源插座。直流快速充电(DCFC)桩的输入电压为440 V或480 V,能在30分钟内充到80%左右,用于公共充电桩。根据中国“一车一桩”计划,电动汽车充电桩总数在2020年将达480万个,电动汽车充电工程的450万个总安装量中将至少有200万个是大功率直流充电桩,且2020年后其它国家也将增加电动汽车充电桩。安森美半导体主要提供DCFC方案。
图1:电动汽车充电级和里程
电动汽车充电桩电源模块系统趋势
1. 增加输出功率以节省充电时间
充电桩将由现在主流的60 kW、90 kW发展到将来的150 kW、240 kW,相应地充电桩电源模块将由现在的15 kW、20 kW、30 kW提高到将来的40 kW、50 kW、60 kW,以缩短充满电的时间。
2. 提高功率密度以节省空间
这可通过提高开关频率Fsw以减少无源器件,并降低损耗以减少散热器来实现。
3. 提高能效以节能
安森美半导体定位于将满载能效从现在的95%提高到超过96%,超越能效法规。
4. 提高系统可靠性
这需要延长电解电容器使用寿命和确保在有尘、潮湿、热、寒区域等户外安装的高可靠性。
超级结MOSFET的优势和使用趋势
转向零排放电动汽车等节能减排趋势推动对中高压MOSFET的需求增加。平面MOSFET的导通电阻Rds(on)和损耗较大。且根据击穿电压与面积成正比,要获得更高的击穿电压需要更大面积的掺杂。超级结MOSFET能够显著降低导通电阻Rds(on)和门极电荷Qg。超级结MOSFET由于电荷平衡,在相同的掺杂下,面积是2倍,因此击穿电压也是两倍,且击穿电压与导通电阻近似线性关系,从而显著降低导通损耗和开关损耗。由于超级结MOSFET在快速开关应用中的能效和功率密度高,常用于高端应用。
电动汽车充电桩架构和安森美半导体的第3代超级结MOSFET方案
例如,210 kW 电动汽车充电点由14个15 kW模块组成,每个15 kW的电池充电器模块都是由3相交流380 V输入,经过3相Vienna 功率因数校正(PFC)后,电压升高到800 V直流电压,再经过高压DC-DC输出250 V至750 V直流电压。
图2:电动汽车充电桩架构
其中,3相Vienna PFC可选用安森美半导体的第3代超级结MOSFET (SUPERFET III)的易驱动(EASY Drive)/ 快速(FAST)系列,多级LLC可选用SUPERFET III 快速恢复(FRFET)系列。EASY Drive系列可内部调节门极电阻Rg和寄生电容,有极低的EMI和电压尖峰,适用于硬/软开关。FAST系列有减小的门极电荷Qg和输出电容储存能量Eoss,低开关损耗,高能效,适用于硬开关拓扑。FRFET系列集成一个高度优化的快恢复二极管,具有超低Qrr和Trr,最小化开关损耗并提高系统级可靠性,适用于软/硬开关拓扑。
图3:推荐的安森美半导体SUPERFET III方案用于电动汽车充电桩
SUPERFET III FRFET系列具有超低Qrr和Trr
在同等工作条件下对安森美半导体的SUPERFET III FRFET系列和Easy Drive系列进行比较,测得FRFET系列比Easy Drive系列的Qrr和Irr分别降低90%和73%。
安森美半导体的SUPERFET III FRFET优于竞争对手
在同等工作条件下,测得安森美半导体的SUPERFET III FRFET的门极电荷Qg、Trr、Irr、Qrr和Eoss比竞争对手都有不同程度的降低,降低幅度从8%到47%不等,并且有更低的导通电阻Rds(on)、关断损耗和同类最佳的二极管性能,因而提供更高的系统能效。
利用SUPERFET III FRFET避免输出短路故障
普通MOSFET在LLC拓扑中容易出现输出短路故障,而安森美半导体的SUPERFET III FRFET通过优化门极电荷Qg等参数可避免输出短路故障,使器件正常工作。
采用SUPERFET III FRFET的HF版本提高系统能效
安森美半导体SUPERFET III FRFET的 F版本在关断时是慢开关,因而有低尖峰Vds和低dv/dt,优势是更好的EMI性能。HF版本在关断时为快速开关,故有更低的开关损耗和更低的Ross,可提供更高的系统能效。
具成本优势的IGBT方案用于电动汽车充电桩
相比较超级结方案,IGBT可提供具成本优势的方案用于电动汽车充电桩。安森美半导体提供领先行业的场截止IGBT技术,其最新的第四代场截止(FS4) IGBT具备同类最低的导通损耗、开通损耗、关断损耗、体二极管损耗和更小的电压尖峰。推荐用于电动汽车充电桩的FS4 IGBT和整流器方案如下表所示。
图4:具成本优势的IGBT和整流方案用于电动汽车充电桩
SiC和智能功率模块(IPM)
此外,安森美半导体也提供650 V和1200 V SiC二极管、1200 V SiC MOSFET,以及紧凑的IPM以实现更高能效、功率密度和可靠性。
总结
安森美半导体凭借在功率器件和封装技术的专业知识,为电动汽车充电应用提供高能效创新的半导体方案,包括同类最佳的超级结MOSFET、具成本优势的 IGBT 及二极管方案、基于SiC的方案和IPM,有助于实现更高性能、能效和更低损耗,是用于电动汽车充电桩 DC-DC、PFC等电源模块的极佳选择。
上一篇:欧司朗新款LiDAR激光器,为自动驾驶增添“千里眼”
下一篇:显示技术对无人驾驶汽车的重要性
推荐阅读
史海拾趣
Gustav Klauke GmbH在电子行业中的五个发展故事
故事一:创立与电气时代的崛起
1879年,Gustav Klauke GmbH在德国雷姆沙伊德成立,正值第二次工业革命带来的“电气时代”大爆发。创始人Gustav Klauke凭借其对精工品质的执着追求,将公司的业务聚焦于电气连接技术和电缆作业工具的研发。随着全球电气工业的迅速发展,Klauke迅速成为该领域的佼佼者,为供电系统的各个环节提供可靠且实用的解决方案,满足了社会对电气产品日益增长的多元化需求。
故事二:产品创新与多元化发展
历经百年开拓,Klauke的产品线不断丰富和完善。从最初的钟表维修钳子,到电缆接线端子的生产,再到电池驱动的液压工具的研发,Klauke始终走在行业前沿。特别是1994年推出的首款电池驱动液压工具,标志着公司在电气连接技术上的重大突破。至今,Klauke已拥有多达280种工具,2000多个型号,超过10000个优质部件,广泛应用于电力、铁路和工业等多个领域。
故事三:品质与认证的国际认可
Klauke深知电气连接作业对安全可靠性的极高要求,因此始终将产品质量放在首位。公司不仅拥有IEC(国际电工委员会)、UL(美国保险商试验所)、DNV(挪威船级社)和GL(德国劳氏船级社)等特殊行业的权威资质认证,还通过严格的产品测试报告,确保每一款产品都能达到国际最高标准。这种对品质的坚持,让Klauke在全球客户中赢得了极高的信誉和口碑。
故事四:全球化布局与业务拓展
随着全球市场的不断扩大,Klauke积极实施全球化战略。从德国本土出发,公司在全球范围内设立了多个分公司和销售办事处,如印度、奥地利、西班牙等。同时,公司还通过并购和合作等方式,不断拓展业务领域和市场份额。例如,2018年Gustav Klauke GmbH被艾默生收购,现隶属于“专业工具”部门,这一举措进一步提升了公司在全球电气工具市场的竞争力。
故事五:未来展望与技术创新
面对未来,Klauke继续秉承德国精工品质的优良传统,致力于技术创新和服务优化。公司正密切关注物联网和工业4.0等下一代趋势,并制定相应的战略计划。例如,新型电池供电液压工具配备了蓝牙接口,实现了移动数据读取和工具配置的便捷性。此外,Klauke还计划推出更多高适应性、精准性的电气连接解决方案,以更好地满足全球日益多元的施工作业需求。展望未来,Klauke将继续向下一个百年目标迈进,为电子行业的发展贡献更多力量。
中国ATM的发展历程始于20世纪80年代中期。1987年,中国银行在珠海推出了中国大陆第一台ATM,标志着ATM在中国开始了发展。随后,经过数十年的快速发展,中国ATM市场经历了多个阶段,从初级阶段到专业化阶段,再到如今的快速发展阶段。中国ATM市场的繁荣,不仅反映了国内银行业电子化建设的成果,也体现了电子行业的快速发展和普及。
随着技术的不断进步,Diodes Incorporated始终保持着对新技术研发的投入。其中,公司推出的首款碳化硅(SiC)萧特基势垒二极管(SBD)就是一个重要的里程碑。这款产品的推出,不仅大幅提高了半导体器件的效率和高温可靠性,还满足了市场对降低系统执行成本和减少维护需求的期望。这一技术创新的突破,进一步巩固了Diodes Incorporated在半导体行业中的领先地位。
在技术创新的同时,顺芯公司也注重市场拓展和品牌建立。公司积极参加国内外各类展会和论坛,与潜在客户和合作伙伴建立了广泛的联系。同时,顺芯公司还加强了与渠道商的合作,提高了产品的市场覆盖率。通过一系列的市场推广活动,顺芯公司的品牌知名度和美誉度逐渐提升。
1957年,被誉为“八叛逆”的八位年轻科学家在罗伯特·诺伊斯的带领下,离开了肖克利半导体实验室,创立了Fairchild Semiconductor公司。这八位科学家,包括诺伊斯、戈登·摩尔等人,后来都成为了硅谷科技产业的领军人物。Fairchild的成立不仅为硅谷的发展奠定了坚实的基础,更为电子行业培养了大量的人才,被誉为“人才摇篮”。
进入21世纪,随着信息技术的飞速发展和工业4.0时代的到来,电子行业面临着前所未有的技术变革。Friedrich Lütze GmbH 积极应对这一挑战,致力于将物联网(IoT)、大数据、人工智能等先进技术融入产品之中,推动公司向智能化、网络化方向转型升级。公司通过建立智能制造体系,提升生产效率和产品质量,同时开发出更加智能、便捷的工业自动化解决方案,为客户提供更加全面的服务。
我公司从事无线通讯,在罗湖区有一套90多m2的正规写字楼,此处于市区中心交通便利,周围环境优美;配带有各办公桌具、ADSL网络 现寻求从事工控行业的创业者一起创业合作 如果您创业需要有一个上好的办公环境,又希望尽可能节省成本,且享受高质量的 ...… 查看全部问答∨ |
|
已经很晚了,快一点了,可是我静不下来。 明天是周一,可是我们新进的员工, 自从培训结束以后,公司就没有给我们安排什么了。 上周五,推迟一周的所谓的论文交上去了, 明天开始,我们几十号人,开始“自由活动”, 电话到人力部,得到的回应 ...… 查看全部问答∨ |
|
挂4个i2c器件,1个24cxx,3个是同一个公司的器件,差别只在地址不同.只有两个通信正常.我用avr不管用硬的还是软的都可以.准备用软的了.… 查看全部问答∨ |
经过实验确证:在电池肯定存在并且绝对接触良好的条件下(电池离芯片很近,印制板连线也不太可能受影响),随着外接电源数字电源(3.3V)、模拟电源(3.3V)这两个电源的质量、上电掉电顺序、电压高低。。。等条件,存在BKP数据及RTC数据丢失的现 ...… 查看全部问答∨ |
上面在第一次分享当中介绍了慢速GPIO功能,它是通过VPB桥复位,速度较慢。这次介绍快速GPIO操作,它是通过局部总线访问。使用到的寄存器有: FIOMASK 屏蔽寄存器,0有效 FIODIR 设置方向 FIOPIN &nbs ...… 查看全部问答∨ |
为什么我的stm32中断处理程序没有响应?PA1->LED1 PA2->LED2PC0->KEY1 PC1->KEY2主程序#include \"stm32f10x.h\"#include \"stm32f10x_conf.h\"extern void Delay(vu32 nCount);void RCC_Config(void);void GPIO_Config(void);void EXTI_Con ...… 查看全部问答∨ |