概述:
MYC-YT113i核心板及开发板
真正的国产核心板,100%国产物料认证
国产T113-i处理器配备2*Cortex-A7@1.2GHz ,RISC-V
外置DDR3接口、支持视频编解码器、HiFi4 DSP
接口丰富:视频采集接口、显示器接口、USB2.0 接口、CAN 接口、千兆以太网接口
工业级:-40℃~+85℃、尺寸37mm*39mm
邮票孔+LGA,140+50PIN
米尔-全志T113-i国产核心板
米尔-全志T113-i国产开发板
全志 T113-i 2D图形加速硬件支持情况
Supports layer size up to 2048 x 2048 pixels
Supports pre-multiply alpha image data
Supports color key
Supports two pipes Porter-Duff alpha blending
Supports multiple video formats 4:2:0, 4:2:2, 4:1:1 and multiple pixel formats (8/16/24/32 bits graphics
layer)
Supports memory scan order option
Supports any format convert function
Supports 1/16× to 32× resize ratio
Supports 32-phase 8-tap horizontal anti-alias filter and 32-phase 4-tap vertical anti-alias filter
Supports window clip
Supports FillRectangle, BitBlit, StretchBlit and MaskBlit
Supports horizontal and vertical flip, clockwise 0/90/180/270 degree rotate for normal buffer
Supports horizontal flip, clockwise 0/90/270 degree rotate for LBC buffer
可以看到 g2d 硬件支持相当多的2D图像处理,包括颜色空间转换,分辨率缩放,图层叠加,旋转等。
备注:本文不具体介绍代码
开发环境配置
基础开发环境搭建参考上上上一篇
除了工具链外,我们使用 opencv-mobile 加载输入图片和保存结果,用来查看颜色转换是否正常
g2d硬件直接采用标准的 Linux ioctl 操纵,只需要引入相关结构体定义即可,无需链接so
此外,g2d的输入和输出数据必须在dmaion buffer上,因此还需要dmaion.h头文件,用来分配和释放dmaion buffer
https://github.com/MYIR-ALLWINNER/framework/blob/develop-yt113-framework/auto/sdk_lib/include/DmaIon.h基于C语言实现的YUV转RGB
这里复用之前T113-i JPG解码的函数基于ARM neon指令集优化的YUV转RGB
考虑到armv7编译器的自动neon优化能力较差,这里针对性的编写 arm neon inline assembly 实现YUV2RGB内核部分,达到最优化的性能,榨干cpu性能。基于G2D图形硬件的YUV转RGB
我们先实现 dmaion buffer 管理器,参考
https://github.com/MYIR-ALLWINNER/framework/blob/develop-yt113-framework/auto/sdk_lib/sdk_memory/DmaIon.cpp
这里贴的代码省略了异常错误处理的逻辑,有个坑是 linux-4.9 和 linux-5.4 用法不一样,米尔电子的这个T113-i系统是linux-5.4,所以不兼容4.9内核的ioctl用法习惯。然后再实现 G2D图形硬件 YUV转RGB 的转换器
提前分配好YUV和RGB的dmaion buffer
将YUV数据拷贝到dmaion buffer,flush cache完成同步
配置转换参数,ioctl调用G2D_CMD_BITBLT_H完成转换
flush cache完成同步,从dmaion buffer拷贝出RGB数据
释放dmaion buffer
G2D图像硬件YUV转RGB测试
考虑到dmaion buffer分配和释放都比较耗时,我们提前做好,循环调用步骤3的G2D转换,统计耗时,并在top工具中查看CPU占用率
sh-4.4# LD_LIBRARY_PATH=. ./g2dtest
INFO : cedarc
转换结果对比和分析
C和neon的转换结果完全一致,但是g2d转换后的图片有明显的色差
G2D图形硬件只支持 G2D_BT601,G2D_BT709,G2D_BT2020 3种YUV系数,而JPG所使用的YUV系数是改版BT601,因此产生了色差。
从g2d内核驱动中也可以得知,暂时没有方法为g2d设置自定义的YUV系数,g2d不适合用于JPG的编解码,但依然适合摄像头和视频编解码的颜色空间转换
上一篇:BeagleBoard创始人谈人工智能和开源硬件
下一篇:树莓派边缘AI相机在Embedded World 2024上亮相
推荐阅读最新更新时间:2024-11-07 13:16
- LTC3532EDD 演示板、微功率同步降压-升压型 DC/DC 转换器
- LTC1450 并行输入、12 位轨至轨微功率 DAC 的典型应用
- C2985579_基于ZTLC5的ZigBee模组验证板
- 使用 Panasonic 的 AN30888A 的参考设计
- DC2290A-D,使用 LTC2386-16、16 位、10Msps 高速 SAR ADC 的演示板
- 使用 ROHM Semiconductor 的 BA15BC0WT 的参考设计
- 一款精致的HK32F030M学习板
- RF433M×Wi-Fi(射频学习收发模块)
- AM2F-1203SZ 3.3V 2 瓦 DC-DC 转换器的典型应用
- 指纹识别