电动零部件异响分析参数方案(二)

发布者:SparklingStar最新更新时间:2024-04-15 来源: elecfans关键字:电机 手机看文章 扫描二维码
随时随地手机看文章

机转速波动

即使电机处于稳定运转的状态下,电机的瞬间转速仍然会出现一定程度的波动。当这种波动现象的频率比较低时,常常给人带来很差的主观感受。因此,在试验中需要测试电机转速。当被测电机较小或其他原因不方便直接测试转速时,也可采用振动噪声信号提取出转速。PULSE Labshop和BK Connect均具有转速自动提取功能,其中PULSE Labshop支持在线实时转速提取。


以下图左侧图形为例,由于电机转速的波动,导致电机振动的频率出现明显的周期变化,这种频率的周期变化与转速的周期变化存在线性等比关系,所以可以利用这些振动频谱,提取转速数据。下图右侧图形的结果,即为左侧数据提取出来的转速数据。

图片

相对音高(Relative Pitch)

在电机稳定运行时,如果出现转速的偏移和波动,就会导致电机噪声的谐波成分发生偏移和波动。为了量化此类现象,可以使用相对音高参数。参考SAE论文(SAE 2019-01-1521),相对音高的定义为Relative Pitch = 19.9317 * log10(f/fmax)

其中f为运行过程中各个时刻的谐波频率,fmax为该谐波频率在运行过程中的最大值。

如果噪声谐波频率不方便获得,也可采用转速信号或振动信号中的谐波成分进行计算。下图为相对音高分析结果的实例,根据偏移的平均结果和容差范围,设置相对音高变化量的上下限。

图片

阶次分析与阶次跟踪

对于旋转机械,阶次分析与阶次跟踪是两种比较常见的分析方法。在阶次分析结果中,横坐标为频率,如下图左图所示,存在一些明亮的斜线,斜线的斜率,对应于X轴频率与 Y轴转频之比,即为对应的阶次。图中存在第69阶的明亮斜线,意味着第69阶噪声较大。在右侧的阶次跟踪结果中,以同样的原始时域数据为例,横坐标是阶次,对应的第69阶为竖直亮线。

两种方法能够提供类似的信息,但是也存在明显区别,左图的阶次分析中,方便查看固有频率与阶次的关系,右图的阶次跟踪中方便查看不同阶次数据。另外一个区别在于阶次分辨率,在低转速时,阶次分析中各阶次亮线非常密集(距离原点越近,各斜线越密集),不利于区分不同阶次,而阶次跟踪中,无论转速处于何种范围,均能保持相同的阶次分辨率( 各阶次为固定间隔的竖线)。两种方法各有优势,实际应用中需要根据分析侧重点选择合适的方法。

图片

(非零原点)正负阶次

在电机的噪声振动信号中,在控制器开关频率周围存在正负阶次。BK Connect可以在频谱云图中显示正负阶次,如下图左图所示,在1720Hz周围存在±2 Order噪声(两条明亮的斜线)。其中的+2 Order在高转速时的颜色更明亮,说明噪声更大。为了对比±2Order噪声,对频谱云图做阶次切片(也称为阶次提取),如下图右图所示,在2000RPM以上,+2 Order明显高于-2 Order,且与全频带Total值非常接近,因此+2 Order是此电机噪声在高转速时的主要成分。

图片

峭度(Kurtosis)与峰值因子

电机在启停阶段和运行过程中,经常出现冲击噪声。在评价冲击噪声的幅值时,除了声压级、响度等常见参数以外,还可能需要峭度(Kurtosis)和峰值因子(Crest Factor)。峭度(或称为峰度)多用于统计学,主要评价数据的散布特点,数据越发散,峭度越大。

以下图为例,当噪声原始时域信号中的声压数据出现冲击噪声时(蓝色方框内),声压数值的绝对值变大,远离0Pa,比没有冲击噪声的时候更发散,因此在左图的Kurtosis vs. time结果中,冲击噪声时刻的峭度会明显大于其他时刻。峰值因子是信号中峰值与有效值的比值,以同样的电机冲击噪声数据为例,在CrestFactor vs. time也能反映出冲击噪声的峰值。

图片

总结

电动零部件通常包含驱动电机和执行机构等结构,它们在运行时可能会产生不同特性的异响。在对此类异响问题进行测试分析时,需要使用一些专门的参数对异响现象进行量化。HBK公司的BK Connect软件中包含多种客观参数计算功能,用户可以直接利用这些参数,也可以根据实际问题,借助MS Excel、MATLAB等其他工具,衍生出其他的参数。

本文结合了一些实测数据和分析结果,对各种参数进行介绍,包括:

• 声压级(SPL)

• 心理声学参数:响度(Loudness)、尖锐度(Sharpness)、抖动度(Fluctuation Strength)、粗糙度(Roughness)

• 调幅参数:调制(Modulation)、包络分析(Envelope)

• 纯音类参数:突出比(Prominence Ratio)、纯音比(Tone-to-noise Ratio)、音调(Tonality)

• 频谱参数:FFT、1/3倍频程(1/3 Octave)、临界频带(Critical Band)

• 统计参数:百分位数、百分位频率

• 偏移与波动参数:颤音(Warble)、转速波动、相对音高(Relative Pitch)

• 阶次分析与阶次跟踪

• (非零原点)正负阶次

• 峭度(Kurtosis)与峰值因子(Crest Factor)

在HBK公司以往的实际应用案例和咨询服务项目中,这些参数能有效地应对绝大多数异响问题,通过适当的客观参数,对异响进行定量研究。除了电动零部件行业以外,本文提及的客观参数同样适用于其他类似行业的异响问题。


关键字:电机 引用地址:电动零部件异响分析参数方案(二)

上一篇:基于混合模型磁链观测器的异步电机矢量控制设计
下一篇:电动零部件异响分析参数方案(一)

推荐阅读最新更新时间:2024-11-19 12:43

【STM32电机方波】记录1——GPIO基础配置
GPIO库函数: GPIO初始化: typedef struct { u16 GPIO_Pin; //选择待设置的GPIO管脚,使用操作符“|”可以一次选中多个管脚 GPIOSpeed_TypeDef GPIO_Speed; //10MHz 、2MHz、 50MHz GPIOMode_TypeDef GPIO_Mode; //输入输出的8种方式 } GPIO_InitTypeDef; GPIO的缺省初始化值: GPIO_Pin = GPIO_Pin_All ; GPIO_Speed = GPIO_Speed_2MHz; GPIO_Mode = GPIO_Mode_IN_FLOATING GPIO的输入输出模
[单片机]
【STM32<font color='red'>电机</font>方波】记录1——GPIO基础配置
异步电机的原理及仿真条件
由于电压模型不含角速度项,因此可作为转子磁链的期望值,而含有角速度项的电流模型的输出值可作为转子磁链的推算值,由他们的广义误差推算电机转速。其中PI调节器参数的选择非常关键,需要通过仿真多次试凑修正,这也是仿真的优势之一。根据上述原理,建立异步电机无速度传感器仿真模型。异步电机无速度传感器控制仿真模型异步电效果。 仿真条件为电机空载,速度从400r/min阶跃到600r/min,其仿真结果稳态偏差为零,但是低速和速度发生阶跃的过程中,转速的估算存在偏差,这是由于磁链波动较大造成的。该仿真实验结果验证了计算参数的正确性,同时步验证了采用基于模型参考自适应的异步电机无速度传感器控制模型的正确性。通过建立电机a有限元模型,然后进行有限元分
[嵌入式]
如何实现直线电机模组的高精度运动控制呢?
直线电机模组的精度主要涉及到分辨率、定位精度和重复定位精度三个参数。它们之间相互关联,而且都是直线电机模组精度的重要指标。只有全面理解直线电机模组精度的三个参数,才能更好地实现直线电机模组的高精度运动控制。 1.直线电机模组分辨率 分辨率是指系统能够产生的最小运动步距,及系统发出一个脉冲运动轴能够行走的最小距离。系统的分辨率不仅取决于反馈系统的分辨率(如光栅尺),还与传动系统有关。如果使用滚珠丝杠传动,在没有预压的情况下会存在传动间隙,从而导致分辨率下降。而直线电机模组采用“零间隙”直接驱动,使得系统分辨率接近反馈系统的分辨率。但是,这也与机械系统的连接刚性、阻尼以及驱动器参数调试的“软硬”程度等因素有关。 2.直线电机模组定
[嵌入式]
51单片机PID电机调速Proteus仿真与源码
本代码采用Proteus仿真,采用51单片机模拟PWM,用定时器获取电机转速信息,用PID算法控制转速,转速、P、I、D都可以用按钮设置,LCD显示屏显示出电机的转速、差值、设定值、P、I、D,并可以粗调跟微调,还有闪烁提示,用来指示当前的设置项目。 仿真原理图如下 不按设定键直接调整的是设定速度值因为速度值是以周期形式调整,所以速度值越小,转速越高,2秒钟无操作退出设置模式,非设置模式调节转速 单片机源程序如下://************************项目信息************************** //项目名称: //客户名称: //************************文件信息*****
[单片机]
51单片机PID<font color='red'>电机</font>调速Proteus仿真与源码
伺服电机的应用及工作原理
一、伺服电机 伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 伺服电机分为直流伺服电机和交流伺服电机,直流伺服电机和交流伺服电机都有各自的应用领域,但直流伺服电机的应用更广泛的情况包括: 1.工业自动化:直流伺服电机常用于工业自动化领域,如生产线上的输送带、机械臂、自动化装配系统等。它们提供了高精度和可控性,适用于需
[嵌入式]
技术文章:微电机效率降低原因解析
效率是微电机比较重要的性能指标,对于不同极数的微电机效率都有不同,转速高的微电机效率高于转速低的微电机,除2极微电机之外,4/6/8极微电机的效率指标转速越低,效率也相对越低。同等功率条件下,转速和转矩为反关系,转速越高,转矩就越低。 对于同转矩的微电机转速越高,效率也就越高,转差率是微电机特有的一个参数,高效率微电机与普通微电机的转速可以发现,高效率电机的转速要高于普通微电机,或者转差率小些,微电机转差与转子绕组电阻紧密相关,电阻大、转差率大,转子电阻损耗也大,导致效率值低,转差率小。 那么,导致微电机效率降低的基本原因有哪些呢? 1.微电机定子铜损大 (1)微电
[工业控制]
技术文章:微<font color='red'>电机</font>效率降低原因解析
电机瞬态测试的核心关键“同步性”
说到电机试验,大家往往想到的都是如何保证测试精度,会用到高精度的测量仪器设备、传感器等。但随着电机行业的发展,特别是矢量变频控制等电机控制技术的日益成熟,测试人员需要对电机的瞬态特性进行分析,这时候就要注意到一个新的测试要点 如何保证测试的同步性。 为什么要关注测试的同步性? 所谓同步性,即在电机测试中确保每个测量参数是在同一时间点下采集的,主要体现在转速、位置、扭矩、电压、电流、温度、振动等参数的同步采集。 测试的同步性对结果的影响最明显在于效率测量。如果转速n、扭矩T等机械参数和电压U、电流I等电参数不在同一时间点下采集,那么根据效率计算公式计算出来的结果也是错误的。 电机效率计算公式 另外,对于新能源汽车,
[测试测量]
<font color='red'>电机</font>瞬态测试的核心关键“同步性”
Microchip的永磁无刷直流电机驱动系统应用
  笔者刚刚参加了“Microchip 16位嵌入式控制设计大奖赛”并取得了一定的成绩。在Microchip公司提议下,我以“Microchip产品及其在电动高尔夫球车永磁无刷直流电机驱动系统的应用”为题来简单介绍我团队参赛项目的背景、系统设计的难点和关键点,概述 Microchip产品及其在该项目中的应用,在文章的最后谈谈自己在比赛过程中的收获和心得体会。   引言   二十一世纪的头一个十年就快悄悄过去了,但人们所热望的电气交通时代却并没有如期而至。在诸多由政府主导、企业和研究机构积极参与的电动车计划如PNGV、Freedom CAR 、PREDIT111在轰隆的引擎声中落幕时人们开始意识到:传统汽车产业的巨大惯性和强大生
[汽车电子]
Microchip的永磁无刷直流<font color='red'>电机</font>驱动系统应用
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved