怎样使用智能系统策略管理EV辅助电池呢?

发布者:科技革新者最新更新时间:2024-06-03 来源: elecfans关键字:管理 手机看文章 扫描二维码
随时随地手机看文章

一种“智能”系统策略可以确保电动汽车无论处于运行或停泊状态时,其辅助电池都具有足够的能量以满足基本负载需求。

随着车辆的电气化和智能化程度越来越高,辅助系统的能耗也在迅速增加。电压通常为12V的辅助电池是该系统最重要的组成部分,支持着车辆的正常运行。无论车辆是处于行驶还是停泊状态,都应确保辅助电池具有足够的能量,满足基本负载需求。然而,现有的方案普遍更专注于车辆运行时的能源管理。

为了填补这一空白,一种检测低荷电状态(SoC)的智能策略被提了出来。该策略可根据负载优先级临时降低辅助负载,并以最大效率为辅助电池充电,使车辆在辅助电池充电方面做出最智能的决策。

因此,该策略可在维持辅助电池电量的同时,将电池能耗保持在较低水平。由于辅助负载是车辆能耗的重要来源,因此必须对辅助动力装置(APU,Auxiliary Power Unit)进行最优能量管理。

54413332-4151-11ee-a2ef-92fbcf53809c.jpg

图1,混动汽车中的辅助系统架构。 (福特)

混动汽车的辅助系统架构(图1)可能因使用的混合动力结构而有所不同。当辅助电池管理系统(ABMS)检测到辅助电池的SoC(充电状态,即电量)过低时,就会通过车身控制模块(BCM)把这一信息传递给动力总成系统(PCM)。然后,PCM会命令APU开始将高压(HV)电池的能量输送至辅助电池。

辅助电池负载类别

辅助电池承受多种负载,具体可分为六个类别,分别是车辆连续运行负载(包括车辆启动时的负载)、瞬态负载(特定事件中所需的负载)、OBD测试负载(满足法规要求所需的负载)、车辆安全与性能负载(分别表示与车辆安全和性能相关的负载)和车辆连续熄火负载。车辆连续运行负载与车辆连续熄火负载不同,前者的幅值通常高于后者。

本研究重点关注两种车辆用例:车辆连续运行负载和车辆连续熄火负载。选择这两类负载是因为它们与APU策略的相关性更高。

控制策略的三大关键功能

拟议策略具有三大功能:低电量检测、辅助负载优先级排序和辅助电池充电。

545c87b8-4151-11ee-a2ef-92fbcf53809c.jpg

图2,拟议策略的说明。(福特)

图2显示了电源和通信示意图。假设在电池充电情况下,ABMS检测到辅助电池的SoC降至低阈值以下,接着BCM会将该信息从ABMS传递给PCM。然后PCM根据负载优先级关闭负载,并命令APU开始将高压电池的能量传输至辅助电池。548be526-4151-11ee-a2ef-92fbcf53809c.jpg

图3,拟议策略的流程图。(福特)

图3显示的是拟议策略的流程图。必须指出的是,虚线框中的停车时间仅适用于车辆熄火场景。SoC的下限用于确定辅助电池的SoC是否会低于该阈值。如果发生这种情况,下一步行动是根据负载优先级来确定是否可以关闭某个用电负载。

该流程完成之后,启动APU为辅助电池重新充电。根据SoC,某些负载也可基于负载优先级重新开启。当辅助电池的SoC达到高阈值时,APU停止向辅助电池充电。

车辆运行场景中的低SoC状态检测是在车辆启动时开始的。PCM继续接收来自ABMS的CAN信号,如辅助电池SoC和电压。当辅助负载从辅助电池中获取电力时,SoC会逐渐减少。一旦SoC降至低阈值以下(如10%),则确定为低电量状态。否则,PCM将继续监测这些CAN信号。

六类辅助负载

表1显示了六类辅助负载的定义。前五类适用于车辆运行场景,其优先级顺序从高到低依次为:1. 车辆连续运行负载;2. 车辆安全操作负载;3. OBD测试负载;4. 瞬态负载;5. 车辆性能负载。 车辆连续运行负载的优先级最高,因为它们为车辆的任何高级功能提供了基本功能支持。其次是车辆安全操作负载。OBD测试负载(满足法规要求所需的负载)排名第三。然后是瞬态负载(如HVAC负载),其优先级高于车辆性能负载,因为它们提供了基本驾驶体验。车辆性能负载的优先级最低,因为它们是车辆运行时的可选负载。

在理想情况下,所有负载都应得到满足。但是在降低能耗和提升性能之间进行权衡时,可暂时和/或有条件地关闭部分负载。

车辆运行场景下的APU充电策略

54b42cac-4151-11ee-a2ef-92fbcf53809c.jpg

图4,APU效率与APU负载超过其最大负载的百分比之间的关系。(福特) 

为了解释本文中提出的最佳充电策略,图4显示了APU效率与APU负载占其最大负载的比值之间的关系。我们可以观察到,APU负载为最大负载的50%-60%时,最大效率为92%。因此,应该选择APU的运行区间,使其尽可能在最大效率下运行。

例如,如果负载总和要求APU负载超过60%,则会暂时关闭优先级较低的负载,以便APU在最大效率下为辅助电池充电。如果负载总和低于APU当前提供的负载,则APU也可在最大效率下运行,但是充电时间会相应延长。 一旦辅助电池的SoC达到95%左右,APU将关闭。由于APU在恒压模式下运行,因此SoC高阈值应小于100%。当辅助电池充满电时,APU负载会相应降低。为避免APU在低效率下运行,应在APU负载未出现大幅下降的情况下,选择SoC高阈值。


车辆熄火场景下的低SoC状态检测

在车辆熄火场景中,车辆的长时间停放或某些连续负载故障可能导致出现低SoC状态。此外,如果部分汽车电控单元(ECU)在完成OBD测试后没有进入“休眠”状态,那么也可能出现低SoC状态。ECU是否进入休眠状态可通过其通信状态来确定。

与车辆运行场景中的低SoC检测不同,车辆熄火场景中的低SoC检测是在车辆熄火后开始的。如图3所示,PCM可能会从云端接收到一条有关车辆未来停放天数的信息。如果车主改变计划,那么停放时间可能会随后更新。PCM可根据车辆停放时间和当前SoC状态,来确定辅助电池中是否有足够的剩余电量,以便在车主返回使用车辆时做好准备工作。如果电量不足,那么PCM将继续监测来自ABMS的CAN信号,如辅助电池SoC和电压。

当辅助负载从辅助电池中获取电力时,SoC会随时间的推移而降低。一旦SoC降至低阈值以下(如10%),则确定为低SoC状态。否则,PCM将继续监测这些CAN信号。

车辆熄火场景的辅助负载优先级排序  

与车辆运行场景类似,我们也进行了车辆熄火场景下的辅助负载优先级排序。不过这个场景下的辅助负载不到五类,仅有三类:车辆连续熄火负载、OBD测试负载和瞬态负载。

车辆连续熄火负载的优先级最高,但它比车辆连续运行负载要小得多。OBD测试负载(根据法规要求,OBD测试是必须进行的)排名第二。瞬态负载(如HVAC负载)的优先级最低。虽然瞬态负载是实现甚至超过车辆使用寿命目标所必需的,但它们不如其他两类负载那么重要。

车辆熄火场景下的APU充电策略与车辆运行场景相同。不同之处在于负载的幅值。车辆熄火时的负载明显小于车辆运行时的负载。充电策略则还是调整APU的运行区间,以确保其在最大效率下运行。

随着汽车制造商提供的辅助驾驶功能越来越多,辅助电池供应商面临的压力也越来越大,他们必须在提高电池效率的同时,实施更先进的能源管理策略,从而在车辆运行期间保持SoC稳定。因此,我们提出了智能系统策略,以检测低SoC状态,以及根据需要对辅助负载的优先级进行排序,并在汽车运行和熄火场景下,通过APU的高效运行对辅助电池进行有效充电管理。   


关键字:管理 引用地址:怎样使用智能系统策略管理EV辅助电池呢?

上一篇:补盲激光雷达,照亮自动驾驶隐秘的角落
下一篇:新能源汽车驱动用永磁同步电机设计

推荐阅读最新更新时间:2024-11-02 19:26

中天科技学院基础运营管理培训班举办
11月22日、23日,中天科技学院基础运营管理培训班分别在中天科技集团河口本部、南通新部举行。集团董事长薛济萍亲自听课并讲了话。他表示,各单位领导要切实重视基础运营管理的培训工作。落实集团“精细制造”战略,必须辅助于手段,集团请中天日立光缆副总仓持政宣先生、中天日立射频副总庄司昭先生授课,目的是请专家传授发达国家先进的最成熟的管理经验,培养起我们自己的管理者和业务骨干。 薛济萍说,我们要象他们那样刻苦学习,善于总结,利用先进的管理工具实现自己的工作目标。管理者不会使用先进管理工具,就不能重用。一个企业没有管理的基础,是走不出去的,也是走不远的。随着中天科技事业的不断发展,我们需要一大批懂经营、会管理的人才,需要很好地学习和
[网络通信]
芯原芯片设计流程获得ISO 26262汽车功能安全管理体系认证
可提供满足各类汽车安全完整性等级的芯片设计服务,扩大芯原在汽车电子领域的竞争优势 2022年5月20日,中国上海—— 领先的芯片设计平台即服务(Silicon Platform as a Service,SiPaaS®)企业芯原股份(芯原) 今日宣布其芯片设计流程已获得ISO 26262汽车功能安全管理体系认证,以支持其按照国际标准为客户提供满足各类汽车安全完整性等级的芯片设计服务。认证证书由国际独立的第三方检测、检验和认证机构德国莱茵TÜV颁发。 通过审查芯原的整体芯片设计流程及质量管理体系(QMS),德国莱茵TÜV认定芯原的芯片设计及管理流程,包括功能安全性管理过程、软硬件开发流程、面向ASIL的功能安全分析等,
[汽车电子]
芯原芯片设计流程获得ISO 26262汽车功能安全<font color='red'>管理</font>体系认证
基于先验预知的动态电源管理技术
引言 电子系统可视为是种类不同的元件集合,有些元件有着固定的性能指标和耗能,这些元件被称为非电源管理元件;上反,有些元件可以在不同时间工作,并且有多种耗能状态,相应地消耗着不同的系统电能,这些元件称为可电源管理元件。可电源管理元件的有效使用成为节省系统耗能,使整个系统在有限电能下长时间工作的关键所在。 系统元件从一种耗能状态到另一种耗能状态往往需要一段时间,并且在这段时间内会消耗更多的额外能量。状态的改变会影响系统的性能,所以设计者需要在系统节能和系统性能之间找到恰当的折衷切入点。本文介绍了动态电源管理中的一些方法。这些方法将决定元件是否改变耗能状态和何时改变。 1 动态电源管理技术 “动态电源管理”
[应用]
微软最新Zune HD选用欧胜电源管理芯片
为消费电子市场提供高性能混合信号半导体产品的全球领先供应商——欧胜微电子有限公司(伦敦股票交易所:WLF.L),今日宣布微软已经选定欧胜集成了立体声编码解码器(CODEC)的电源管理器件WM8352,用于其获得高度赞誉的新一代Zune HD便携式媒体播放器。 WM8352是欧胜成功的电源管理器件系列产品之一,其高度集成的解决方案可为领先性的便携式多媒体设备提供出众的音频质量和更长的电池寿命。 WM8352可与多种先进的多媒体应用处理器兼容,将内置的一个高保真音频CODEC与电源管理子系统结合,可以确保创建各种全新的、令人兴奋的多媒体平台,同时显著降低功耗、系统成本、设计和制造复杂程度以及缩短产品上市时间。在电
[手机便携]
研诺公司推出1.6A动态电池充电器/电源管理芯片
该智能型器件通过对电源、电池与系统之间进行管理,使得电池充电与系统运行同步进行 加利福尼亚州桑尼维尔-2007年3月14日 ——为移动消费电子产品提供电源管理半导体器件的开发商AnalogicTech有限公司(纳斯达克: AATI)日前宣布,推出一款产品编号为AAT3670的高度集成1.6A动态电池充电器与电源管理芯片。该款高度智能型器件将一个电池充电器、限流负载开关电路及控制电路集成于一体,适用于由单块锂离子/聚合物电池供电的便携式系统,并在不损害电池的充电寿命周期以及无需添加外置负载开关的情况下,允许使用者在通过一个AC适配器或USB端口给电池充电同时,运行他们的系统。AAT3670可向电池提供尽可能最高的充电电流,从而能
[新品]
新型材料在LED行业热管理的应用
“十二五”七大战略性新兴产业发展规划和地方节能环保 LED 照明推广政策的出台,为 LED照明 带来重大发展契机。据行业报告显示,我国LED照明行业市场规模从2008年至2012年由不足140亿增长至约800亿,增长率约484%,预计2013年我国LED照明行业将突破1000亿,增长率达38.6%。   在LED产业链条中,上游芯片、外延等关键技术被国际厂商(PhilipsLumileds、CK、CREE、Nichia、OSRAM等)牢牢控制。国内LED竞争市场主要集中在中游加工、下游终端及部分低价值的配套产业,并在地域上形成形珠江三角洲、长江三角洲、北方地区、闵三角地区四大产业链区域。   图1:LED产业链及代表公司
[电源管理]
新型材料在LED行业热<font color='red'>管理</font>的应用
日产联合中汽中心发布 《智能网联汽车自动驾驶系统测评及管理方法研究报告》
3月9日, 日产 汽车公司、日产(中国)投资有限公司(日产中国)与中国汽车技术研究中心有限公司(中汽中心)联合发布了《智能网联汽车自动驾驶系统测评及管理方法研究报告》(《研究报告》)。该报告由中汽中心标准所组织撰写,得到了日产汽车公司与日产中国的权威技术支持。 雷诺 -日产- 三菱 联盟副总裁吉泽隆先生,中汽中心党委书记、董事长、总经理安铁成先生出席了本次发布会,吉泽隆先生于会议期间通过网络视频连线分享了日产汽车在智能网联汽车自动驾驶领域的最新成果,并展望了智能网联汽车的广阔发展前景。 日产汽车与中国汽车技术研究中心有限公司联合发布《智能网联汽车自动驾驶系统测评及管理方法研究报告》 雷诺-日产-三菱联盟副总裁吉泽隆先生表示
[汽车电子]
日产联合中汽中心发布 《智能网联汽车自动驾驶系统测评及<font color='red'>管理</font>方法研究报告》
基于最新电源管理技术和设计理念介绍
电子书无疑是目前便携电子市场最热门的应用,那么电子书的最大竞争力和卖点是什么呢?电子书的 电源 设计应该注意什么?电子书的屏幕如何实现与众不同呢?怎样实现电子书的超长待机时间呢?TI半导体事业部业务拓展工程师王轶就这些大家所关注的问题一一进行了分析探讨。 王轶指出,E-book与其它电子产品的不同之处在于具有一个特殊的屏,在电子书断电之后仍可显示图像,电子书最重要的就是屏。目前电子书的屏幕技术比较单一,要实现与其他厂商的差异化就必须保证电子书有很长的寿命,不会因时间久而老化。同时,产品的优劣还可以通过液晶屏翻页显示的快慢来检验。在谈到,E-book超长待机的设计考量时,王轶指出,TI E-reader最大的卖点是超长待机时间,最
[电源管理]
基于最新电源<font color='red'>管理</font>技术和设计理念介绍
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved