西门子S7-300 PLC的故障分析案例

发布者:心愿实现最新更新时间:2024-06-14 来源: elecfans关键字:西门子  S7-300  PLC  故障分析 手机看文章 扫描二维码
随时随地手机看文章

大家好,本周又为大家带来了西门子杨工在工作现场处理的真实案例了,这次杨工来到了另外一个客户的现场,客户所在的行业是机电行业。

该现场使用的是西门子的S7-300的PLC,该项目运行了一年多,一直有问题,但最近出现问题比较频繁,现象是每天从CPU第一次上电运行,大概30分钟后,开始出现停机的情况,停机时 SF、STOP灯亮。此时只能通过手动复位,CPU才能恢复运行。而之后,该现象将随时出现,并且越来越频繁,甚至有时几乎每个程序周期都会停机,因此严重影响了用户的生产。


根据故障情况,杨工初步怀疑是现场存在电磁干扰。因此杨工决定奔赴现场对问题进行定性并决定最终处理方案。到现场后,杨工首先观察PLC运行的情况。杨工发现,现场采用的是西门子S7-314C-2PN/DP的CPU,在运行过程中会出现系统故障,但能够自动消失(图1)。 

0ade7e40-403c-11ee-ac96-dac502259ad0.jpg

图1:PLC报系统故障

之后,杨工观察了故障出现的情况,发现该故障的出现是有规律的:当Q5.4动作时,该SF灯会亮,当Q3.4动作时,该SF灯消失。因此,杨工怀疑是程序出现问题。通过读取在线诊断信息,发现CPU报BCD码转换故障(图2)。 

0afa25d2-403c-11ee-ac96-dac502259ad0.jpg

图2:CPU在线诊断信息报BCD码转换故障

经过与编程人员的交流,发现是上位机的某时间参数设定超限。该参数设计设定值范围应为0~99,但现场设定为100,因此程序每次运行至此都会报BCD码转换故障,并导致SF灯亮,而当该部分程序运行结束后,故障就会消失。

将该值改为0~99 之间的任意值后,SF灯不再点亮,该系统故障不再出现。这是杨工在现场发现的第一个故障,但这个故障并没有导致现场设备停机。

之后随着杨工继续观察,大概经过了1个小时后,突然出现了一次停机故障。现象就是CPU停机时,SF灯和STOP灯亮,同时5V灯亮(图3)。 

0b1b584c-403c-11ee-ac96-dac502259ad0.jpg

图3:CPU停机

此时,只能将CPU上的拨码开关拨至STOP位置再重新拨回RUN位置,CPU才可以正常重启。杨工在线检查CPU的诊断信息后发现,此时CPU报的是IO模板丢失的故障(图4)。

0b495b02-403c-11ee-ac96-dac502259ad0.jpg

图4:在线诊断信息

从诊断信息情况看,应该是CPU在瞬间无法识别其模板,导致CPU进入停机状态。由于现场的电气柜内有较多的继电器和接触器(图5),因此杨工怀疑是由于这些感性负载动作时产生的干扰导致了CPU从而导致了停机,因此杨工对CPU的电源进行了检测。

0b71905e-403c-11ee-ac96-dac502259ad0.jpg

图5:柜内安装了继电器和接触器

通过波形,可以看到在CPU的24V电源线上,随着设备的动作,能够检测到有高频干扰的存在,其中有的信号较强(图6)。

0b8ca2f4-403c-11ee-ac96-dac502259ad0.jpg

图6:在24V电源线上检测到的共模干扰

同时,在柜内,杨工发现了一块镀锌板(图7)。杨工估计该镀锌板是用于系统接地的,但实际情况是,并没有任何的PLC系统接地线连到该镀锌板上,也没有发现该镀锌板接到外部的“地”(图7)。

为了减小感性负载对PLC的冲击,杨工将PLC的安装底板与该镀锌板相连接,同时将该镀锌板连接到外部的金属结构上(图7)。 

0baa2fa4-403c-11ee-ac96-dac502259ad0.jpg

图7:PLC 做了接地处理

为此,现场进行了一系列的改动和布线、接线工作。但随后杨工发现,系统接了“地”之后,CPU运行一段时间,依然出现停机现象。然后杨工又检测了PLC系统220V电源线上的干扰情况,果然发现干扰信号依然存在(图8)。 

0bcd31ca-403c-11ee-ac96-dac502259ad0.jpg

图8:PLC220V电源线上的干扰

由于杨工已经将系统进行了接地处理,那么该干扰信号是怎么进入到电源的呢?杨工进一步检测了CPU 的M端与PE之间的电阻,发现该CPU的M端与PE之间存在电阻值(图9)。并且该值在0~6M欧之间跳变。

0bf68bb0-403c-11ee-ac96-dac502259ad0.jpg

图9:检测CPU的M与PE之间存在电阻

但314C系列的CPU的24V电源M端与PE端在内部应该是短接的,因此该电阻值是不应该存在的。现场刚好还有一个同样类型的CPU,杨工对另外一块CPU进行了检测了,发现该CPU的电源M端对PE之间的电阻值为0欧姆。因此,这就意味着,出现停机现象的CPU本身也已经存在一些问题。

由于现场出现跳停大概要30分钟左右,因此杨工每次需要观察到底是什么情况下该CPU会停机都得将近1个小时,而且每次停机的情况都不同,很难发现规律。但通过一段时间的观察,杨工发现:当设备的某个关料阀动作的时候,PLC比较容易停机,而且几乎每次停机都是发生在该关料阀到位的时刻。而该阀对应了一个接触器,当阀体关到位时,该接触器会断开(图10)。 

0c156954-403c-11ee-ac96-dac502259ad0.jpg

图10:控制关料阀的接触器 

由于关料阀动作的同时,其液压系统电机会启动,因此,杨工怀疑是电机电缆布线不规范导致其对系统的220V电源电缆产生了干扰,因此杨工将该电机电缆从线缆沟里找出来,单独进行了布线,远离了供电电源电缆,从而避免了电缆之间的干扰,但随后杨工发现,CPU依然会停机!!!因此,该干扰不是来自于电机电缆的,应该还有别的原因。

为此,杨工再次对柜内的接触器动作的时刻的波形进行了检测。由于该接触器并没有配备浪涌吸收回路,因此在接触器动作的时刻,都会出现脉冲干扰,而且有时干扰脉冲的幅值还非常的高(>20V),但每次的干扰脉冲大小并不相同。是否是这些干扰导致CPU的停机呢?于是杨工对该干扰脉冲进行了检测。

通过一段时间的观察,杨工发现:由于柜内安装了较多的接触器和继电器,因此从示波器上可以看到很多干扰脉冲,并且幅值也并不相同。由于杨工此刻重点关注的是连接关断阀的接触器,因此杨工在每次该接触器断开时都会格外注意示波器的屏幕,但杨工发现,尽管该接触器的负载最大,但并不是每次的干扰幅值都是最高的,而有时屏幕上也会出现一些幅值很高的干扰脉冲,但此时最大的接触器却并没有动作。并且系统停机时,屏幕上并没有出现很高的干扰脉冲。这就意味着--柜内每个接触器或者继电器动作时,都有可能导致CPU停机。

但这与杨工观察到的情况似乎有有些矛盾,因为杨工逐渐发现,系统确实是在关断阀体的时候容易停机,尽管不是每次动作都停机,但每次停机几乎都是系统的关料阀动作到位时发生的。但为什么停机时没有看到最大的干扰脉冲出现呢?带着疑问,杨工进行了多次的测试,直到有一次,杨工看到CPU停机的时刻,刚好是接触器断开的瞬间,同时在示波器上发现杨工也发现了一个非常大的干扰脉冲(图11)。

0c369296-403c-11ee-ac96-dac502259ad0.jpg

图11:CPU停机的瞬间检测到该脉冲

至此,杨工终于看到了该断路器断开的瞬间,出现了较大的干扰脉冲,导致CPU停机。原来,最终还真是这一个接触器引起了系统停机等等一系列的故障。当然,根据杨工建议,现场将该接触器外面增加吸收回路后,问题得到彻底的解决。

但这里有个问题,就是为何停机时示波器并不是每次都能抓到最大的干扰脉冲?杨工的分析,认为应该是由于设备动作时,并不见得每次都能产生最大的干扰;另外,系统干扰可能是一个累积的过程,由于之前感性设备断开时产生的干扰没有能及时的释放掉,因此甚至随后的一个很小的干扰也会最终导致系统出现问题。

通过这个现场出现的问题,杨工帮我们工友总结出以下两点,是现场检测环节中比较关键的要素:

1.自动化现场的接触器、继电器等带感性负载线圈的设备必须增加浪涌吸收回路。

2.现场电气系统必须接地。


关键字:西门子  S7-300  PLC  故障分析 引用地址:西门子S7-300 PLC的故障分析案例

上一篇:变频器的工作原理是什么?变频器的选用要点有哪些?
下一篇:解析嵌入式工控机与传统工控机的区别

推荐阅读最新更新时间:2024-11-12 20:27

如何实现两台PLC之间的MODBUS无线通信
在工业现场可能会遇到这样的情况,分布在不同地方(车间、控制室场所等)的PLC之间需要进行远程相互控制,通常是采用RS485总线,通过MODBUS协议完成此功能。 如果现场布线不方便的话,也可以采用无线方式进行通信。这里以达泰DTD433无线模组和西门子S7_200为例进行说明。 一、两台S7_200西门子PLC之间的远程控制 实现的功能: l PLC1的8个开关量输入,I0.0~I0.7与PLC2的开关量输出Q0.0~Q0.7一一对应,也就是说上图中的A1开关按下时,PLC1的开关量输入I0.0闭合,PLC2的输出继电器触点Q0.0导通,L2点亮。 l PLC2的8个开关量输入,I0.0~I0.7与PLC1的开关量输出Q0.0~Q0
[嵌入式]
PLC控制系统的基本设计步骤
设计plc应用系统时,首先是进行PLC应用系统的功能设计,即根据被控对象的功能和工艺要求,明确系统必须要做的工作和因此必备的条件。然后是进行PLC应用系统的功能分析,即通过分析系统功能,提出PLC控制系统的结构形式,控制信号的种类、数量,系统的规模、布局。最后根据系统分析的结果,具体的确定PLC的机型和系统的具体配置。 PLC控制系统设计可以按以下步骤进行。 1.熟悉被控对象,制定控制方案分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,确定被控对象对PLC控制系统的控制要求。 2.确定I/O设备根据系统的控制要求,确定用户所需的输入(如按钮、行程开关、选择开关等)和输出设备(如接触器、电磁阀、信号指示灯等)
[嵌入式]
关于PLC维护检修方法与技巧
PLC的结构可以分为外观和内部两个方面。以典型的西门子S7-200为例,其外部主要有电源输入口、I/O口,PLC状态指示灯、输入输出指示灯、传感器输出接口、检修口等构成;内部结构有CPU电路板、输入输出接口电路板、电源电路板,其中CPU电路板是核心,主要完成运算、存储和控制功能,一般情况下由微处理器芯片和存储器芯片等构成。 PLC在应用上实现了开关量的控制,模拟量的闭环控制,数字量的智能控制,还能对现场数据采集与监控。实际工作中所使用的PLC是西门子的S7系列,主要对医药生产设备实现自动化控制功能,比如控通过触摸屏的操作对PLC实现输入信息,控制柜中的PLC处理信息后按程序对阀门、泵等执行元件进行控制,所有状态信息与报警信息通
[嵌入式]
基础的PLC编程设计实例
PLC在学习的过程中,除了需要掌握必备的基础理论知识以外,更需要亲身设计电路来实践,刚开始学习PLC编程的时候,可以先从小的电路小的程序入手,由浅入深,先易后难的进行学习,今天我们就重点来看看具体的基础的PLC编程实例:
[嵌入式]
基础的<font color='red'>PLC</font>编程设计实例
打造打造更完整的网络解决方案,西门子收购 UltraSoC
西门子近日签署协议,收购总部位于英国剑桥的 UltraSoC Technologies Ltd.(“UltraSoC”)。UltraSoC 是一家监测与分析解决方案提供商,为片上系统(SoC)的核心硬件提供智能监测、网络安全和功能安全等能力。西门子计划将 UltraSoC 的技术整合到 Xcelerator 解决方案组合当中,构成 Mentor Tessent™ 软件产品套件的一部分。UltraSoC 的加入能够帮助西门子实现统一的、以数据驱动的基础设施,从而进一步提高产品质量、安全性和网络安全性,打造更完整的解决方案,助力半导体行业客户克服包括制造缺陷、软件和硬件漏洞、设备早期故障和磨损、功能安全性及恶意攻击等在内的行业痛点。
[网络通信]
打造打造更完整的网络解决方案,<font color='red'>西门子</font>收购 UltraSoC
PLC边沿指令的使用经验
边沿指令,指上升沿指令EU和下降沿指令ED: 1、边沿指令针对位逻辑值操作,因此凡是操作结果为位逻辑的,都可以在后面跟边沿指令,比如I、Q、M、V、C、T、比较指令等等; 2、每条边沿指令都是相互独立的,它只跟程序执行到该指令时,被操作的位逻辑值有关; 3、程序从RUN开始后,第一次执行到该边沿指令时,总是输出0,并记下此次的位逻辑值; 4、以后程序每执行到该边沿指令,用记下的前一次的位逻辑值和当前的位逻辑值,以决定输出结果,同时再记下当前的位逻辑值,供下次使用。 5、上升沿指令在前前次位逻辑值为0而本次位逻辑值为1时,输出为1 6、下降沿指令在前前次位逻辑值为1而本次位逻辑值为0时,输出为1 7、不受边沿指
[嵌入式]
三菱PLC的选型标准
输入/输出(I/O)点数是三菱plc可以接受的输入信号和输出信号的总和,是衡量三菱plc性能的重要指标。I/O点数越多,外部可接的输入设备和输出设备就越多,控制规模就越大。所以其被列为七大性能标准里的头号因素! 标准二:指令的功能与数量 指令功能的强弱、数量的多少也是衡量三菱PLC性能的重要指标。编程指令的功能越强、数量越多,三菱PLC的处理能力和控制能力也越强,用户编程也越简单和方便,越容易完成复杂的控制任务。 标准三:可扩展能力 三菱PLC的可扩展能力包括I/O点数的扩展、存储容量的扩展、联网功能的扩展、各种功能模块的扩展等。在选择三菱PLC时,经常需要考虑三菱PLC的可扩展能力。 标准四:特殊功能单元 特殊功能单
[嵌入式]
三菱PLC编程软件FX2N PLC怎么添加模块
三菱电机的FX2N系列PLC是一种小型、高性能的可编程逻辑控制器,广泛应用于工业自动化领域。FX2N PLC支持多种扩展模块,包括输入/输出模块、模拟量模块、特殊功能模块等。本文将详细介绍如何在FX2N PLC中添加模块,包括模块的类型、连接方式、配置方法等。 一、模块类型 输入/输出模块 输入/输出模块是FX2N PLC中最常用的扩展模块,用于扩展PLC的输入/输出点。根据输入/输出点的类型,输入/输出模块可以分为以下几类: 1.1 通用输入模块:用于接收开关量信号,如按钮、限位开关等。 1.2 特殊输入模块:用于接收特殊类型的信号,如温度传感器、压力传感器等。 1.3 通用输出模块:用于输出开关量信号,控制继电器、接触
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved