利用SCR轻松驱动AC DC转换器启动

发布者:LuckyDaisy最新更新时间:2024-06-24 来源: 21ic关键字:SCR  DC 手机看文章 扫描二维码
随时随地手机看文章

I.前言

过去十年,新装服务器的市场需求增长迅猛,2015到2022年复合年均增长率达到了11%。拉动市场增长的动力主要来自以下几个方面:首先,个人文件无纸化和企业办公数字化进程加快;其次,全球健康危机期间的居家办公,新媒体平台融入个人生活,致使屏幕使用时间大幅增加;最后,随着人工智能的兴起和普及,这个市场将继续保持高速增长。在这个背景下,给服务器设计开关电源殊为不易,主要是处理高热耗散问题,以及降低这种大型可扩展设备的维修成本,这是摆在电源开发者面前的两大难题。

基于可控硅来解决这两大问题的方案应运而生,提出了用可控硅替代传统机电开关的设计在开关电源的AC/DC部分的启动功能的方案。


II.先进技术

a)原理

在 AC-DC功率转换器启动过程中,大容量电容直流充电时会产生高于系统标称稳态电流10 倍的大电流,这种涌流会在市电交流电源上产生电压降,从而影响同一电源连接的其他设备的正常运行。在IEC61000-3-3标准里有电压波动和频闪的定义。

要想保护电气设备的安全和功率转换器的可靠性,必须抑制这种浪涌电流。事实上,浪涌电流可能会触发或烧毁电源串联的设备,例如,断路器、保险丝、电容器或桥式整流器。

有三种解决方案可以抑制电气设备连接电源时产生的浪涌电流:

- 用继电器并联NTC或PTC热敏电阻,在电源恢复到稳态后短接启动电阻,传输电能,降低电阻的电能损耗;

- 用SCR可控硅代替方案1的继电器;

- 用SCR设计软启动的导通配置

关于每个涌流抑制解决方案在启动阶段和稳态阶段的工作原理图,见图1。


利用SCR轻松驱动AC DC转换器启动

图1:AC/DC转换器:浪涌电流抑制电路拓扑

b)为软启动寻找一个适合的方法

以前的标准拓扑是用机电继电器建立一条旁路,绕过管理浪涌电流的NTC热敏电阻。用 SCR建立旁路也可以实现同样的效果。现在更加优化的方法是采用软启动拓扑。

通过用相位角控制SCR开关操作,可以把PFC输出电容器的电压平稳地提高至交流线路的峰值电压。MCU控制预充电流峰值,并同步SCR栅极驱动信号的相位角步长(图2中的Δt)。


利用SCR轻松驱动AC DC转换器启动

图2:采用纯SCR拓扑的软启动

不难发现,ILINE 峰值和 Δt 值是相关的:Δt值越大,ILINE 峰值越高,系统启动越快。

c) 纯SCR涌流抑制拓扑的优点

软启动拓扑允许设计人员不用机电元件和无源元件(即 NTC 或 PTC)就能处理在应用启动阶段出现的浪涌电流,从而降低AC/DC整流部分的物料成本。

通过用MCU 控制SCR 的导通,设计人员可以轻松设置线路电流大小,改善启动时间,同时满足IEC61000-3-3标准。

SCR可控硅X1 和 X2 正在取代下桥臂上的标准整流二极管,可控硅驱动电路是由一个双向晶闸管Q1和两个小二极管D1和D2组成。

因为采用这种驱动器配置,MCU可直接控制SCR导通,无需额外隔离电路和交流线路极性检测。只要被施加正偏置电压后,SCR就能正向导通,因此当将栅极电流反向施加到未使用的SCR时,没有潜在功率损耗的风险。

这种全固态浪涌电流管理方案没有笨重的活动的机械元件,因而改进了电源的可靠性和使用寿命。此外,应用中不再有因为继电器触点弹跳产生的EMI噪声。与继电器相比,可控硅没有老化问题。

图 3从能效、功率密度、使用寿命、声学噪声和电磁干扰几个方面比较了16A SCR和16A机械继电器的应用性能。


利用SCR轻松驱动AC DC转换器启动

图3:SCR与机械式继电器性能对比

III. 数据中心的电力损耗非常严重

数据中心SMPS设计人员面临的主要难题是功率损耗。即使散热方法不断改进,不管是水冷还是油冷,首要手段仍然是限制转换器分立功率器件的电能损耗,使开关电源尽可能达到最高能效。

a) 基于继电器的1500W电源与基于SCR的1500W电源能耗对比

我们在1500 W电源装置(PSU)上测量了纯SCR解决方案的能效。该电源的最初配置使用的是机械继电器,我们用意法半导体开发的评估板(STEVAL SCR002V1)替换机械继电器,在电源上实现一个纯SCR的启动拓扑。图 4 显示了两种解决方案在输出负载从 10% 到100% 时的能效。

SCR 拓扑的能效与继电器的能效完全相同。


利用SCR轻松驱动AC DC转换器启动

图4:1500 W电源能效对负载比曲线图

b) 150°C 结温下的 SCR 损耗优化

选择正确的 SCR 对于防止高功率损耗和可能的过热现象非常重要。意法半导体开发了一系列AC/DC转换器专用的SCR。

150°C最大结温是关键参数。图 5描述了 16A SCR(TN1605H-8I)在高温条件下的通态特性。在150 °C结温和RMS 6.5 A电流(在1500 W / 230 V电源上)时,SCR 的通态压降低于正常温度25°C 的通态压降,所以,SCR在高温工作时的功率损耗会更低。

在高温工作时,SCR还有其他优点:较低的散热要求、更宽的温度裕量、更高的可靠性。


利用SCR轻松驱动AC DC转换器启动

图5:16A SCR在高温通态时的特性

VI. 电路实现及工作方式

设计者的第一个问题是“如何设计整流桥中的SCR栅极电路”?

这个问题很容易回答,因为下面的栅极电路是由分立器件组成的,由 MCU 直接控制,并且不需要给接口额外加隔离器件。

为了简单地解释电路的工作原理,我们只讨论交流线路正弦波的正半波,下面是电路运行方式:SCR可控硅X2 是由 Q1 通过二极管 D2导通。因此,一旦 MCU激活Q1,X2也会导通。Q1栅极电流来自MCU,而X2 栅极电流是通过Q1和D2接收的交流电源的电流。


利用SCR轻松驱动AC DC转换器启动

图6:电路工作方式

在正弦波的正半周期,D1二极管被反向偏置,因此没有栅极电流流过 X1 SCR的栅极,从而防止SCR 漏电流导致的反向损耗增加。

在浪涌阶段,MCU 控制Q1三端双向可控硅开关元件的相位角,因此,X2 SCR也是用相位角控制。浪涌电流流经 D3、PFC 输出电容(C)、X2 SCR,然后回到零线。Vdc充电顺利。

在稳定状态下,PFC导通,MCU控制Q1三端双向可控硅全波段导通,X2可控硅导通。在交流电源正弦负半周期也是同样的操作,使用相同的MCU I/O 信号。


结论

纯SCR拓扑及其专用的非绝缘驱动器可以轻松地替代机电继电器和/或无源元件解决电气设备启动时的浪涌电流问题,这个基于高结温SCR的完整固态解决方案非常适合功率密度非常高的应用场景,例如,数据中心的SMPS电源。该方案有以下几个好处:高能效;去除机械部件,高可靠性;实现简单的非隔离控制电路。


关键字:SCR  DC 引用地址:利用SCR轻松驱动AC DC转换器启动

上一篇:AC-DC及DC-DC转换器和稳压器等电源管理器件的PDN设计
下一篇:借助以太网和10Base-T1L SPE优化IIoT网络

推荐阅读最新更新时间:2024-11-06 20:49

选择最佳DC/DC变换器的要点及途径
一、元器件的选择 1.DC-DC电源变换器的三个元器件 1)开关: 无论哪一种DC/DC变换器主回路使用的元件只是电子开关、电感、电容。电子开关只有快速地开通、快速地关断这两种状态。只有快速状态转换引起的损耗才小,目前使用的电子开关多是双极型晶体管、功率场效应管,逐步普及的有IGBT管,还有各种特性较好的新式的大功率开关元件。 2)电感: 电感是开关电源中常用的元件,由于它的电流,电压相位不同,因此理论损耗为零。电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。其特点是流过它上的电流有“很大的惯性”.换句话说,由于“磁通连续性”,电感上的电流必须是连续的,否则将会产生很大的电压尖峰波。 电感
[电源管理]
PWM DC/DC转换器所用元件开关管
  对开关管的要求是快速开通、快速关断,只有快速地进行状态转换才符合PWM DC/DC转换器的工作需要,才会使开关过程中的交叠损耗减小。 PWM DC/DC转换器常用的开关管有两种:一种是功率场效应管MOSFET;另一种是绝缘栅双极晶体管IGBT。   N型沟道MOSFET的电路图形符号及其结构如图所示。这是一种场控器件,各电极的作用类似于NPN型晶体管。漏极D相当于集电极C,源极S相当 于发射极E,栅极G相当于基极B。最显着的区别是:MOSFET管是电压控制式开关器件,栅一源之间只需几伏的电压(不需要静态电流),就可以控 制它的输出电压和输出电流。   如图 N型沟道MOSFET的电路图形符号及其结构   
[电源管理]
PWM <font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>转换器</font>所用元件开关管
电流模式控制DC/DC转换器中的电流检测电路设计
电流检测电路是电流模式控制所必需的, 通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法,又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路原理图及电流源动态特性曲线如图1( a)、(
[测试测量]
电流模式控制<font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>转换器</font>中的电流检测电路设计
安森美半导体推出无传感器三相电机控制器用于汽车BLDC
2016年6月21日,安森美半导体(ON Semiconductor,美国纳斯达克上市代号: ON)推出LV8907UW,进一步扩展电机控制器产品阵容。该款高性能、功能丰富的器件支持从5.5 V至20 V(4.5 V至40 V瞬态)的工作电压范围,实现用于驱动三相无刷电机的精简的方案。LV8907UW集成门极驱动器以驱动6个N沟道MOSFET,和一个两段式电荷泵实现100%占空比工作。在其最低成本配置中,该IC无需外部微控制器就能工作。该器件无需编程,因为关键参数和功能如启动和速度设置可通过SPI接口配置,并存储在嵌入的非易失性(OTP)内存中。该器件还可进行开环和闭环速度控制。对于更复杂的应用,LV8907UW还可支持小的微控制器
[汽车电子]
安森美半导体推出无传感器三相电机控制器用于汽车BL<font color='red'>DC</font>
ADC0804+LED数码管显示模拟值0~255
#include reg52.h #define uint unsigned int #define uchar unsigned char sbit rd=P3^7; sbit wr=P3^6; sbit cs0=P3^5; sbit hc=P3^4; void delay(uint ); void format0804(); void display(uchar aa ); unsigned char code table1 = //共阳段码控制 {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; unsigned char code dispbit
[单片机]
A<font color='red'>DC</font>0804+LED数码管显示模拟值0~255
MSP430之八路ADC单次采集的程序
本程序采用的是八路ADC单次采集的模式,根据配置,在单次的模式下转换完成后ADC12SC会自动复位,因此需要在循环中进行ADC12CTL0 |= ADC12SC;操作,而如果配置成连续采集的模式,只需要在程序开始将ADC12SC置位一次就可以,但是就需要注意当进入中断后如果不手动禁止中断会一直停留在循环中,因此在采集到需要的数据后需要将ADC关闭或者中断使能禁止才能重新回到主函数,这一点需要注意。   八路单次采集的程序如下:   [cpp] view plain copy/***************************************   八路AD多路单次采集基亚5110液晶显示   采集模式:多路单次   
[单片机]
msp430 ADC10单通道多次转换
MSP430 ADC10单通道多次转换 #include msp430x22x4.h #define uchar unsigned char #define uint unsigned int #define LCDen 0X80; //P3的高三位做控制线 #define lcdrw 0X40; #define lcdrs 0X20; void delay(uint z) //延时程序 { uint x,y; for(x=z;x 0;x--) for(y=100;y 0;y--); } void write_com(uchar com) //写指令 { P
[单片机]
IDC报告:未来几年Linux系统将稳定成长
  由Linux基金会赞助IDC针对Linux所进行的调查分析报告显示,企业部署Linux服务器操作系统的用途将从传统的架构导向扩大到诸如数据库、企业资源规画等商用导向,若再加上Linux价格低廉的属性,未来Linux将会成为更重要及更普及的平台。该报告指出,愈来愈多企业采用Linux服务器操作系统,涵盖软、硬件及服务的Linux SOE支出预计从去年的210亿美元,以年复合成长率24.1%的速度增加到2011年的490亿美元。   若仅计算Linux平台上的软件销售,现在100亿美元的Linux软件营收仅占整体软件市场营收(2420亿美元)的4%,IDC预估2011年Linux软件的营收将会成长到310亿美元,届时将占整体软
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved