利用 DLP 前照灯提高能见度

发布者:Qilin520最新更新时间:2024-07-15 来源: elecfans关键字:DLP  前照灯  能见度 手机看文章 扫描二维码
随时随地手机看文章

汽车制造商正在寻找提高夜间驾驶能见度的方法。适用于前照灯的 DLP®汽车技术可以提高能见度并为其他应用提供支持。


前照灯用于照亮前方的道路并使驾驶员发现任何潜在的危险。基本前照灯通常采用两个模块:近光基础灯和手动开/关远光灯。不过,驾驶员很少遇到需要使用远光前照灯的情况,因此很少使用该选项。


最近,在汽车照明行业中已经大力推动改善车辆前照灯功能和驾驶员能见度,从而使自适应远光灯 (ADB) 前照灯得到发展。ADB 系统自动控制包括远光灯在内的整个前照灯,使驾驶员能够专注于道路,而无需再根据光照条件和对面是否驶来车辆来打开或关闭远光灯。

1678335108315184.png

ADB的优势和分辨率

ADB 汽车外部照明系统的目标是在不影响迎面驶来的汽车驾驶员的情况下,更大程度地增大投射到道路上的光量,从而提高道路安全性。对于没有远光视野 (FOV) 分 区( 也称为像素远光灯)功能的车辆,ADB 系统功能包括自动打开和关闭远光灯。包括用于汽车应用的 DLP 技术在内的新技术使远光前照灯 FOV 能够分 区,换句话说,可以分别打开或关闭远光前照灯的各个区域。

例如,如果远光前照灯有 12 个区域,则仅需关闭这些区中的几个,即可防止对迎面驶来的车辆驾驶员产生眩光。其他区仍然可以照亮道路,而且与未配备 ADB 系统的车辆相比,此类车辆所产生的光照更多。图 1 显示了夜间驾驶情况的示例,其中驾驶员逐渐接近迎面驶来的车辆、交通标志和道路上的坑洼。驾驶员的车辆未配备 ADB 系统,因此仅车辆的基础照明照亮道路。图 2 显示的驾驶场景与图 1 相同,不过此时驾驶员的车辆配备了 12 像素分区 ADB 系统。分区 ADB 系统用多个红色框表示,可突出显示远光 FOV 中每个像素的照明区域。

1678335243855839.png

图1 仅具有基础照明模块的前照灯FOV

1678335301703851.png

图2 具有12像素矩阵的前照灯FOV。在远光FOV中,每个像素用红色区域表示

从图1和图2可以看到,ADB 系统中的分区越多,远光 FOV就可以发出更多的光来照亮道路。在恒定的 FOV 中,区域的数量按数量级增加时,这种关系也是成立的 - 因为随着分区变得越来越小,ADB 系统可以点亮更多的区域,而不会照射其他车辆,也不会对其他驾驶员产生眩光。

除了使照射到道路上的光线更多之外,增加分区的另一个好处是,遮蔽区域的移动更加顺畅,这可以减小大面积远光 FOV快速开关对驾驶员产生的干扰。ADB 系统中的遮蔽区域是未被远光模块照亮的 FOV 区域,可以防止对迎面驶来的车辆驾驶员和车辆的 ADAS 系统产生眩光。在图 2 中,遮蔽区域是远光 FOV 中缺少 LED 的区域,用红色框表示,这些区域是迎面驶来的车辆周围的区域(可防止对迎面驶来的车辆驾驶员产生眩光)和交通标志(可防止反射光在 ADAS 系统的前置摄像头上产生眩光)。

车辆原始设备制造商 (OEM) 和一级前照灯供应商一直在讨论提高 ADB 分辨率以照亮道路上的更多细节并减小遮蔽区域移动对驾驶员的干扰的需求。DLP5533A-Q1 高分辨率前照灯数字微镜器件 (DMD) 具有 130 万个可单独寻址的微镜,可提供极高的 ADB 分辨率。DLP5533A-Q1 上的每个微镜都可以对应于远光 FOV 中的一个区域,从而使ADB系统能够以最高的效率运行并产生非常精确的遮蔽区域。

适用于汽车应用的 DLP 技术的另一项优势是能够在远光FOV 中离散移动遮蔽区域。随着更高分辨率的ADB系统以及遮蔽区域在远光FOV中更加平滑的过渡,驾驶员会发现这些ADB 系统比远光区域更少的 ADB 系统更加自然并且产生的干扰更小。OEM 和一级前照灯供应商对在前照灯 FOV 中移动DMD 的投影区域进行了探索,可支持高分辨率 ADB 前照灯以外的应用。

前照灯FOV矩阵和DMD

在未配备 ADB 系统的标准车辆中,通过两个模块来分离近光区域和远光区域。标准远光模块的 FOV 是每个前照灯 40 度乘 10 度。这些模块经过对齐,总共可覆盖 80 度乘 10 度的车辆远光 FOV。基本的 ADB 系统使用有限数量的像素(通常每个前照灯 12 个像素,总共 24 个像素)来控制整个 80 度乘 10度的远光空间。通常,这些 ADB 系统在垂直区域没有控制功能,这意味着一个分区在垂直方向上覆盖全部 10 度的范围。随着分辨率的提高,ADB 系统利用 2D 像素矩阵来实现远光分区,从而能够提供垂直方向控制,并更大程度地增大投射到道路上的光量。图 2 展示了一个示例 ADB 系统,每个前照灯只有 12 个 区域,无远光段垂直控制功能,因为仅显示了一个1D 矩阵。迎面驶来的车辆上方和下方的区域以及交通标志周围的区域其实可以被更高分辨率的光照亮,从而驾驶员可以看见物体或迎面而来的障碍物。

OEM和一级前照灯供应商已在寻求为 ADB 系统提供更高分辨率的方法,尤其是在远光 FOV 的中心。由于道路危险通常直接位于车辆前方,因此远光 FOV 的中心对于更大程度地提高光量而言至关重要。当前的汽车前照灯远光模块照度分布通常在中心附近具有一个较小的峰值亮度区域。

图 3 显示了标准的远光照度分布,其理念是只有在远光 FOV的中心才需要高分辨率。在远光 FOV 边缘附近实现高分辨率会以指数方式增加系统的复杂性和成本,而不会提供相应的功能增益。因此,一级前照灯供应商设计了具有第三个模块的新型前照灯,该模块仅在车辆 FOV 的中心提供高分辨率。DLP汽车技术可以实现一个具有高性价比的高分辨率区域,从而直接解决该新型前照灯架构问题,同时使一级前照灯供应商能够轻松创建模块化设计并支持多种车辆饰件。

1678338896338311.png

图3 具有高中心峰值的典型远光照度分布

DLP5533A-Q1 DMD 经过优化,支持覆盖 14 度乘 7 度FOV 的模块;每个前灯通常使用这些模块之一。但两个DLP5533A-Q1 模块(每个前照灯一个)可以为车辆的 FOV 生成 28 度乘 7 度的高分辨率区域。

图 4 显示了图 2 中具有高分辨率区域的示例前照灯 FOV 细分,

1678339028446276.png

图4 DLP前照灯FOV细分

在图 4 中,放置了 28 度乘 7 度的高分辨率区域以覆盖近光和远光 FOV 中的空间。除了提供 ADB 支持(远光 FOV 中的高分辨率区域)之外,这种跨界功能还使 DLP 前照灯模块能够在近光 FOV 的“HR 图形区域”中的负载上投射高分辨率符号。由于 DLP5533A-Q1 能够提供创建可理解符号(例如指示驾驶员需要右转的右转箭头)所需的分辨率,因此该器件非常适合进行符号投影。由于车辆前照灯的 原因 方向,与标准投影显示相比,分辨率与前照灯投射的符号清晰度之间的关系更加明显。由于前照灯未在垂直于投影源的表面上进行投影,因此投射的符号很容易被拉长,从而在没有足够的角分辨率的情况下使驾驶员无法理解这些符号。

图 5 显示了每像素 0.05 度角分辨率(可以通过专用于符号投影的 20,000 像素矩阵实现)与每像素 0.01 度角分辨率(可以通过 DLP5533A-Q1 高分辨率前照灯模块的近光区域实现)之间的投影符号差异。当从 10m 远的位置投影 2m 高的图像时,这些角分辨率分别对应于大约 12 条线和 49 条线。

image.png

image.png

图5 在10m远的位置投射具有不同垂直分辨率的右转符号

符号投影区域(在图 4 中以 HR 图形区域突出显示)可以帮助驾驶员导航到目的地,警告驾驶员存在潜在危险路况或投射车辆的预定线路。符号投影不仅提供了另一种车辆通信方法,而且可以成为车辆功能和驾驶体验的差异化因素。符号投影展示了适用于高分辨率前照灯的 DLP 技术的多功能性,以及它如何扩展车辆照明系统的价值定位。

面向未来的前照灯应用

尽管 DLP 技术凭借其高分辨率极大地改进了 ADB 系统并实现了符号投影,但基于 DLP 技术的前照灯还有其他方法,通过扩展应用来改进高级驾驶辅助系统 (ADAS) 功能,从而为车辆增加价值。这些面向未来的应用可能包括结构光(可帮助下一代 ADAS 更好地检测和识别道路上的物体和障碍物)、交通标志调光(用于防止前置摄像头眩光)和天气探测(用于提醒驾驶员潜在的危险路况)。

结构光。DMD 能够以微秒的量级极其快速地切换状态 - 使DLP前照灯模块能够在很短的时间内显示 single-bit 图案。当这些 single-bit 图案与车辆的前置摄像头刷新率同步时,DLP前照灯模块可以投射旨在用作深度传感的图案,而不会引起驾驶员的注意。该应用称为结构光。ADAS 处理器使用前置摄像头来捕获对图案的响应,并确定车辆行驶路径中是否有任何物体。如果 ADAS 系统检测到任何碎屑或坑洼,它可以通过符号投影功能警告驾驶员存在危险。图 4 和图 6 对此进行了描述,图 4 显示了原始驾驶场景,在图 6 中 DLP 前照灯和前置摄像头系统识别坑洼并向驾驶员发出警告。

image.png

图6 DLP前照灯与ADAS摄像头系统配合工作,可检测到道路上的物体并向驾驶员发出警告

除了坑洼和碎屑检测之外,结构光还可以改善主动悬架系统在夜间的性能。由于系统能见度很差,因此许多主动悬架系统的夜间性能不佳,但 DLP 前照灯可以极大地提高主动悬架系统的性能。

交通标志调光。OEM和一级供应商希望将ADAS前置摄像头传感器移至前照灯附近或内部。该新位置的一个缺点是ADAS摄像头系统的性能在夜间交通标志附近可能会降低。如果自适应前照灯将光直接反射回至光源,则交通标志会在夜间干扰ADAS前置摄像头的性能和精度。当有光线直接照射在摄像头的镜头上时,摄像头传感器会“泛光”或过饱和,从而完全洗掉图像。这会阻止任何现实世界的数据到达ADAS系统,因此无法警告驾驶员存在潜在的危险。利用 DLP 前照灯模块的高分辨率,ADAS系统可以创建高效的 遮蔽并熄灭照向交通标志的光线。这使车辆前端摄像头 ADAS 系统能够正常运行,从而使驾驶员可以更好地理解交通标志。在城市街道和高速公路上使用时,交通标志调光是 ADB 的必备功能,因为交通标志在这些类型的道路上频繁出现。图 7 描绘了一个DLP前照灯,该前照灯使交通标志变暗,但照亮了试图横穿马路的儿童。

image.png

图7 DLP前照灯醒目地照亮了一个试图横穿马路的儿童,同时使人行横道标志变暗以减少眩光

●   天气探测。高分辨率前照灯可用于帮助在夜间驾驶时探测天气情况。有些车辆白天仅用摄像头即可探测天气,但在夜间这是一个问题,因为夜间光线不足。借助高分辨率前照灯,车辆可以增大照射到特定区域的光的强度,从而帮助提高摄像头的能见度。通过使车辆的 ADAS 前置摄像头系统能够在夜间探测天气情况,车辆可以自动启用安全功能或配置,从而更好地处理包括雾天和路面结冰在内的危险情况。


结论

虽然 DLP5533A-Q1 DMD 旨在提高 ADB 分辨率,并帮助车辆更大程度地提高道路上的光量,但该器件的 130 万个微镜可实现新的应用。符号投影可以通过将导航符号投射到汽车前方来帮助驾驶员将视线停留在道路上,并可以通过投射预定线路来帮助车辆与周围的车辆进行“通信”。结构光能够启用车辆中可警告驾驶员即将发生危险(例如道路上的坑洼和物体)的功能。交通标志调光可以帮助减少前置摄像头眩光并支持适当的 ADAS 功能。天气探测可以在最关键的时刻帮助驾驶员将视线停留在道路上。DLP 高分辨率前照灯将继续满足OEM和一级前照灯供应商的需求,同时为设计人员提供创新和开发新功能的平台。


关键字:DLP  前照灯  能见度 引用地址:利用 DLP 前照灯提高能见度

上一篇:基于 AMR 的电流感应助力下一代电动汽车充电
下一篇:电池管理系统创新如何提高电动汽车采用率

推荐阅读最新更新时间:2024-11-11 08:27

TI亮相2017慕尼黑上海光博会 DLP在工业领域大有可为
德州仪器(TI)DLP® 产品事业部工业解决方案所支持的工业应用于3月14日至16日在上海慕尼黑光博会上进行展示。基于可编程DLP的3D机器视觉、3D打印、光谱分析、数字光刻等方案吸引了众多开发者驻足。“对于今年能够再次参展,我感到十分荣幸。DLP技术是过去20年间久经验证的领先MEMS技术。”TI DLP® 企业及影院显示工业产品市场负责人Raecine Meza说。 TI DLP® 企业及影院显示工业产品市场负责人Raecine Meza 从1996年以来,DLP从最开始进入数字投影的市场,引领院线从胶片时代转换到数字时代,德州仪器(TI)作为数字投影技术革新的重要推动者,不断尝试将DLP技术拓展,近几年在
[传感器]
TI亮相2017慕尼黑上海光博会 <font color='red'>DLP</font>在工业领域大有可为
DLP背投影机的色轮和色彩处理技术
一、DLP色轮技术的基本原理 众所周知,由于DLP采用DMD微镜片反射技术,在色彩处理中,单片和两片DMD方式均采用色轮来完成对色彩的分离和处理。 一般来说,色轮(COLORWHEEL)是由红、绿、蓝、白等分色滤光片的组合,可将透过的白光进行分色,并通过高速马达使其转动,然后顺序分出不同单色光于指定的光路上,最后经由其它光机元件合成并投射出全彩影像。    从物理结构来看,色轮的表面为很薄的金属层,金属层采用真空膜镀技术,镀膜厚度根据红、绿、蓝三色的光谱波长相对应,白色光通过金属镀膜层时,所对应的光谱波长的色彩将透过色轮,其它色彩则被阻挡和吸收,从而完成对白色光的分离和过滤。  在单片DMD投影系统中,输入信号被转化为RGB
[嵌入式]
价格最亲民的TI DLP®Pico™ display评估模块
 TI大力研发具有突破性的DLP®投影显示技术。五年前,TI推出了DLP Light Commander,帮助开发人员更方便的使用TI技术。下面就随手机便携小编一起来了解一下相关内容吧。 目前,TI支持包括DLP Pico™ display TRP产品线在内的评估模块(EVM),如DLP2010(宽视频图形阵列 )、DLP3010(720p)及DLP4710(1080p)产品。DLP Pico技术已经扩展到诸多应用领域,包括增强现实、虚拟现实、售后市场平视显示器、移动智能电视、销售点、虚拟助理、商业游戏和微型投影仪。 随着业务范围及生态系统的扩张,开发人员希望获得更广泛的产品组合,从而覆盖以低成本处理器为主的市场。对于想要评估DL
[手机便携]
海拉为全球高端制造商提供创新的世界通用前照灯
并非所有的光都是一样的:前照灯照亮路面的方式因地而异。例如,在美国,车辆的近光灯可以照亮远处的两个车道,而在欧盟,则更关注于照亮自己的车道,并将其他道路使用者的眩光降至最低。另一方面,美国的立法仅允许使用近光、雾光和远光等传统照明功能,而在欧盟动态光分布以至于数字化控制的无炫目远光都是被允许的。 为了满足不同地区对光分布的相关要求,必须根据使用区域为车辆前照灯开发和制造不同的 光学系统 。考虑到右行和左行的交通规则,全球车型可能需要多达12种技术类型不同的前大灯。 随着 海拉 为全球高端制造商提供的 世界通用前照灯 在2020年夏季上市,将不再需要为各地区开发不同版本的灯具。该前照灯只需通过软件控制,就可以通过同一款SSL
[汽车电子]
基于DLP技术的近红外光谱仪设计
一、简介 近红外光谱分析是一种强大的技术,通过样品对不同波长的光的吸收或发射的变化,实现对物理材料的识别和分类。适用工作在700至2500 nm之间的波长下的手持式光谱分析仪能够用于食品、制药、石油和天然气等行业,医疗、安全和其他新兴行业。基于DLP的光谱仪用DMD和一个单点探测器代替传统的线性阵列检测器进行波长探测。如下图。 通过依次扫描列(转动在特定的像素列上),特定波长的光被引导到检测器并且捕获。近红外(NIR)光谱中的DLP技术提供了以下优势: 1、与线性探测器相比,通过使用更大的单点1mm探测器获得更高的性能,而线性探测器仅具备小像素获取能力。 2、通过使用单点InGaAs探测器和低成本光学器件,可以降低了系统成本。
[测试测量]
基于<font color='red'>DLP</font>技术的近红外光谱仪设计
先锋采用DLP作为其增强抬头显示器投射源
近日,先锋的实景增强抬头显示器宣布将选用德州仪器的DLP作为其HUD投射光源,通过使用DLP,可以提高投影显示的对比度和色彩饱和度,最大可支持30英寸的面积。 先锋此前曾将MicroVision公司的HD PicoPGen2激光技术应用于其车载影音导航系统“Carrozzeria Cyber Navi AR”。通过红、绿、蓝颜色的激光将车载影音导航系统的画面直接投射在车窗上。能够在约3m的距离内投射出一个清晰可见的约900mm×300mm大的图像,显示的图像内容仿佛漂浮在车前。 而DLP首次应用于车载导航,将成为继投影机市场之后,又一重要里程碑。 以下为MicroVision与先锋合作开发的HUD(Head UP Displ
[汽车电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved