为什么电流和磁传感器对TWS(真无线耳机)的设计至关重要?

发布者:清新天空最新更新时间:2024-07-17 来源: eepw关键字:电流  磁传感器  TWS  真无线耳机 手机看文章 扫描二维码
随时随地手机看文章

近年来,TWS(True Wireless Stereo,真无线耳机)正在耳机市场中快速崛起。现在,用户在使用流媒体设备时不必再为耳机线的缠绕问题而困扰了。真无线耳机是基于Bluetooth的无线耳机,其左右通道被分离成独立又相互配对的两个个体。尽管这种创新设计使用户不再需要用线连接手机或其它设备,但这给耳机制造商带来了一系列新的设计挑战。


为了最大限度地延长电池寿命和电池运行时间,耳机必须确保在充电盒中的正确位置,并且可以在充电时高效充电。一种高性价比的做法是将电流检测放大器用于监测耳塞充电,以及将霍尔效应开关用于无线充电盒的开合和耳塞摆放位置能够最大限度地提高这一应用场景的电池充电效率和电池寿命,提高用户体验。


用电流检测放大器进行设计

TWS的电池容量通常低于100mAh。因此,为了保护并准确地给这些小容量电池充电,我们需要更精确的电流测量。传统电池充电器和电量计在监测更大的电池(如充电箱中的电池)电流方面表现出色,但在监测更低电流方面常常表现一般。


专用电流检测放大器在测量小电流时更加准确。如果您的设计中已经有了微控制器(MCU)或电源管理集成电路(PMIC),那么您可以基于写入MCU或PMIC的算法来使用这些放大器的输出监测和测量电池使用次数和电池寿命。图1显示了一个带有外部电流检测放大器和控制器的电量计。

image.png

图1:带外部电流检测放大器和控制器测量的电量计

在无线耳塞充电盒中放置两个小型电流检测放大器(如INA216)能够实现高精度充电电流测量。或者,如果优先考虑解决方案尺寸,则建议使用单个像INA2180一样的双通道电流检测放大器。


如果精度不是重要考虑因素,且假设电流分配相等,那么一个电流传感器可以监测两个耳塞的充电情况。在耳塞中放置一个双向电流检测放大器,如INA191或INA210,可同时实现充电和测量功能。不管您使用哪种拓扑结构,这些器件都可以更好地保护电池,因为即使微小的电流变化也会影响电池的使用寿命。


用霍尔效应传感器进行设计

TWS的新功能是围绕充电和进行的创新。充电盒盖的开合可以用来进行蓝牙连接的开启或关闭,而入盒/出盒检测可以判断是否停止充电以及左右耳配对。其他传感器技术可能无法经济有效地通过合适的灵敏度来正确实现这些功能,所以选择合适的传感器至关重要。图2显示了TWS传感器的布置。

image.png

图2:无线耳塞传感器的布置和使用

霍尔效应传感器能够很好地应用于检测充电盒盖和耳塞充电情况。鉴于磁铁已用来合上充电盒盖,因此,以霍尔效应开关的形式使用磁感测解决方案检测盖子显然是一种无需额外零件即可之际连接/断开蓝牙的解决方案。此外,将磁铁放进在耳塞,是一种能够检测充电盒内是否存在耳塞的从而有效充电方法。


选择适合的数字霍尔效应传感器非常重要,并且低频率/低功耗的特性让DRV5032成为了不二之选。对于霍尔效应传感器在耳塞中的应用,完全能够实现每秒提供5次磁铁检测信息。此频率允许您使用DRV5032的低功耗选项,该器件仅消耗约0.5µA的静态电流,不会电池使用时间产生严重影响。


确定充电状态和充电盒盖检测对于使用小容量电池和无线连接的耳塞都至关重要。电流检测放大器和霍尔效应传感器为那些努力围绕这些新特征和挑战进行设计的人员提供了解决方案。


关键字:电流  磁传感器  TWS  真无线耳机 引用地址:为什么电流和磁传感器对TWS(真无线耳机)的设计至关重要?

上一篇:可穿戴设备的安全性管理
下一篇:详解可穿戴设备电源管理关键考量

推荐阅读最新更新时间:2024-11-05 12:18

Loto实践干货(8) 实测 保险丝 用示波器带电流探头
本文用LOTO示波器和5A的电流探头来实验两种常见类型的保险丝的保护曲线。一种是熔断型的,另一种是自恢复型的。我们通常需要在一些电路中对电流过大的情况做保护,比如防止用户把输出源短路,比如防止用户对电路灌入大电流烧毁。这种情况下,我们需要在需要保护的电路中串入保险丝。 熔断型的保险丝原理是当电流增大,保险丝的温度升高,打到额定电流后烧断保险丝,从而切断了电流路径。 自恢复保险丝(Polymeric Positive TemperatureCoefficient,PPTC)的原理是,当电流增大到一定程度后,过流使它温度升高时,阻值急剧增大几个数量级,使电路中的电流减小到安全值以下,从而使后面的电路得到保护,过流消失后自动恢复
[测试测量]
Loto实践干货(8) 实测 保险丝 用示波器带<font color='red'>电流</font>探头
电流波形交越失真问题分析
EMI问题: 描述:设计2通道的LED driver ,采用AC+DC+LED的方式。每路500mA,20W。总功率:40W。 问题:EMI测试时,辐射超标,主要集中在30-100MHz上。采样点在36,44,48,76,86,96,116MHz上。 整改发现: 1.MOS上的VDS 波形正常,峰峰值小于600V,尖峰振荡也在正常范围; 2.次级整流用10A/200V 的双极快恢复二极管,VD max=225V,于理论值180V偏高,尖峰峰值245V左右; 3.输出电压纹波2V,波形表现良好; 4.输出电流波形:单路电流波形表现很好,纹波156mA左右;但对双路总电流波形,有畸变,表现为两路电流在时间上不同步,形成交
[测试测量]
电流表原理和如何避免测量误差(一)
电流表 是测量电流流动的仪器,以安培为单位。一般有两种主要的电流表结构:分流式和反馈式。 分流或与反馈式 电流表 分流式 电流表 是最常见的型式并且在 很多应用中用到;反馈式 电流表 在测量小电流时更加合适;由于现在的被测电流幅度越来越小,他们的用途越来越多。但是,选择合适的 电流表 不仅由被测电流的大小决定,还要分析被测器件的特性(最典型的例如阻抗)。 分流式 电流表 与数字多用表 分流式 电流表 是最常见的 电流表 类型并且在几乎所有的数字多用表(DMMs)里都含有。这些表通过测量在输入端形成的与被测电流成比例的电压得出电流。 (如图1) 分流式 电流表 的主要缺点是他们原理上的高输入阻抗设计。在电流减小时这种缺点更加
[测试测量]
<font color='red'>电流</font>表原理和如何避免测量误差(一)
线性电容的电压电流关系及区别
电容元件是实际电路中储存电场能量这一物理性质的科学抽象,在仅是实际电容器,凡是带电导体与电介质存在的场合,都可以用电容元件来描述储存电场能量的物理现象。同电阻一样,通常用符号C表示电容元件,C表示电容元件的参数(电容量)。电容量是常数的电容器称为线性电容。 在电容元件两端电压u的参考方向给定时,若以q表示参考正电位极板上的电荷量,则电容元件的电荷量与电压之间满足 q=Cu C表示电容元件的电容,当电容元件是线性元件时,C不随u和q改变,称为线性电容。可见,线性电容元件的定义式为 C= q/u 当q的单位为C,u的单位为V时,由上式得电容C的单位为法 (F),实际电容的电容量往往比1F小得多,因此实际使用中还
[电源管理]
线性电容的电压<font color='red'>电流</font>关系及区别
谐波电流是怎样对电气设备造成干扰的?
装过内存、玩过芯片的人都知道,在冬天不能用手轻易触碰金手指,因为有可能因为自己不经意的使用习惯就导致精密的内存、芯片报废。终其原因,是因为冬天人手容易带静电,不要小看这静电,他瞬间的电压可达几千伏,可谓是内存、芯片杀手! 对于精密电子设备来说,最怕遇到的就是来自外部干扰的冲击,这往往是致命的。事实上,外部干扰无处不在,比如在工业现场,电网就无时无刻都在被谐波电流冲击,这同样会对用电网络中的精密电子设备形成严重干扰。那么这种干扰是怎样形成的呢? 在用电网络中,存在许多非线性负载,如:中频炉、变频器、直流电机驱动器、电子镇流器等工作电流剧烈变化的设备,会向电网注入谐波电流。这类谐波电流产生的电压畸变容易导致PLC、数控机床、计
[电源管理]
谐波<font color='red'>电流</font>是怎样对电气设备造成干扰的?
变压器绕组直流电阻的测量之电流电压表法
电流电压表法 电流电压表法有称电压降法。电压降法的测量原理是在被测量绕组中通以直流电流,因而在绕组的电阻上产生电压降,测量出通过绕组的电流及绕组上的电压降,根据欧姆定律,即可计算出绕组的直流电阻,测量接线如图所示。 电流电压表法测量直流电阻原理图 测量时,应先接通电流回路,待测量回路的电流稳定后再合开关S2,接入电压表。当测量结束,切断电源之前,应先断S2,后断S1,以免感应电动势损坏电压表。测量用仪表准确度应不低于0.5级,电流表应选用内阻小的电压表应尽量选内阻大的4位高精度数字万用表。当试验采用恒流源,数字式万用表内阻又很大时,一般来讲,都可使用图1-1(b)的接线测量。 根据欧姆定律,由式(1-1)即可计算出被测电阻的
[测试测量]
变压器绕组直流电阻的测量之<font color='red'>电流</font>电压表法
90kw电机软启动瞬间电流多大
一、引言 电机作为工业生产中不可或缺的动力设备,其启动方式对电机的使用寿命、能耗以及启动过程中的机械冲击等有着重要影响。传统的直接启动方式虽然简单,但启动电流大,对电网和电机本身都存在一定的影响。软启动技术作为一种新型的电机启动方式,可以有效降低启动电流,减少启动过程中的机械冲击,提高电机的使用寿命和运行效率。 二、软启动技术的原理 软启动技术概述 软启动技术是指在电机启动过程中,通过控制电机的输入电压或电流,使电机从零速逐渐加速到额定转速的一种启动方式。与传统的直接启动相比,软启动技术可以显著降低启动电流,减少启动过程中的机械冲击,提高电机的使用寿命和运行效率。 软启动技术的原理 软启动技术的原理主要是通过控制电机的
[嵌入式]
Allegro MicroSystems推出采用XtremeSense™TMR技术的高带宽电流传感器
采用Allegro专利技术XtremeSense™TMR的新型电流传感器是收购Crocus Technologies以来推出的首批产品。 美国新罕布什尔州曼彻斯特 - 运动控制和节能系统传感技术和功率半导体解决方案的全球领导厂商Allegro MicroSystems(以下简称Allegro)宣布推出两款新型 XtremeSense™ TMR传感器,新产品能够简化高功率密度设计,在提高能效的同时可节省空间和成本。 Allegro的最新解决方案CT455 和 CT456具有高带宽和低噪声,可为人工智能(AI)数据中心和汽车动力总成等应用提供精确的电流测量。  当今主流市场仍在使用笨重、侵入式和低能效的电流传感器模块,这
[传感器]
Allegro MicroSystems推出采用XtremeSense™TMR技术的高带宽<font color='red'>电流</font>传感器
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多往期活动

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved