射频识别标签性能测试研究

发布者:LuckyDaisy最新更新时间:2024-07-31 来源: eepw关键字:射频识别标签  性能测试  RFID系统 手机看文章 扫描二维码
随时随地手机看文章

在实际应用中,RFID系统的应用要综合考虑位置、距离、温度、湿度、干扰等诸多影响系统性能的因素。未经过测试的RFID系统,系统整体性能不明确,可能会影响实际应用效果,甚至打击最终用户对RFID技术本身的信心。


不同的无线信号传播方式需要不同的测试设备支持,并且要采用不同的方法。ISO/IEC 18047-3定义了用于物品管理的RFID标签的性能特性的测试方法,规定了标签性能的一般性要求和测试要求。下面对各个具体测试内容进行分析。


符合ISO/IEC18000-2、ISO/IEC 18000-3和ISO/IEC18000-6的感应标签的功能测试该部分规范了感应标签的测试内容和测试方法,包括识别磁场强度阈值、读磁场强度阈值、写磁场强度阈值、最大工作磁场强度、生存磁场强度、负载调制。


对于不同的测试内容,测试方法比较相似:首先设置测试工作频率,然后设置波形发生器的幅度,再将标签放入测试装置,发送特定的指令,并逐渐增大 幅度,直到标签响应。然后根据不同的测试内容进行针对性的测量,记录测试结果和计算测试内容的值。以识别磁场强度阈值测试为例,流程图1所示,其 中,URHTA为当前波形发生器的幅度。



图1:针对18000-2标签的识别磁场强度阈值测试流程

不同协议情况下测试流程的差别主要体现在测试流程中的各个参数变化和指令差异等,具体为:

测试频率

在感应型标签测试中,符合ISO/IEC18000-2协议的标签测试中对应的频率为125kHz或134.2kHz;符合ISO/IEC 18000-3协议的标签测试中对应的频率为13.56MHz;符合ISO/IEC18000-6协议的标签测试中对应的频率分别为860MHz到 960MHz的每5MHz一个步进的频点,以及额外的三个频点866MHz、915MHz、953MHz。

测试初始振幅

在识别磁场强度阈值、读磁场强度阈值、写磁场强度阈值的测试中,信号发生器的初始振幅设置为识别磁场强度阈值以下(一般为0);而最大工作磁场强度、生存磁场强度、负载调制的测试中,初始振幅设置为识别磁场强度阈值。

测试指令

在识别磁场强度阈值、最大工作磁场强度、生存磁场强度、负载调制的测试中,使用“盘存指令”;在读磁场强度阈值、写磁场强度阈值的测试中,分别使用“读指令”和“写指令”。另外,在最大工作磁场强度测试中,还可以使用“询问指令”。

测试结果取值

在识别磁场强度阈值、读磁场强度阈值、写磁场强度阈值测试中,测试结果的取值为所有测试记录值中的最大值;最大工作磁场强度、生存磁场强度、负载调制测试中,测试结果的取值为所有测试记录值中的最小值。

测试流程

不同协议在同一项测试内容上的测试流程是相同的,而不同测试内容之间的测试流程总体相似,但具体步骤稍有不同,如:读磁场强度阈值和写磁场强度 阈值测试中,需要从第一个存储块开始测试,直到最后一个存储块结束;最大工作磁场强度和生存磁场强度的测试中,最大工作磁场强度测试需要先发送指令,再调 整波形幅度值,而生存磁场强度测试中是先调整波形幅度值,再发送指令。

电磁传播型标签功能测试

该部分规范了电磁传播型标签的测试内容和测试方法,包括识别电磁场强度阈值和频率峰值、读电磁场强度阈值、写电磁场强度阈值、灵敏度降级、最大工作电磁场强度、生存电磁场强度、雷达散射截面变化率、干扰抑制、最大识别变化率、最大写变化率。

对于所有的测试内容,测试工作频率都为860MHz~960MHz频段上步进为5MHz的所有频点,以及ISO/IEC 18047-6中规定的3个频率866MHz、915MHz、953MHz。对于不同的测试内容,测试方法与前述感应标签的测试流程非常相似。不同测试内 容的测试流程差别主要存在于测试流程中的各个参数变化和指令差异等,具体为:

测试初始振幅

识别电磁场强度阈值和峰值、读电磁场强度阈值、写电磁场强度阈值、灵敏度降级测试中,信号发生器的初始振幅设置为识别磁场强度阈值以下(一般为 0);最大工作电磁场强度、生存电磁场强度、雷达散射截面变化率测试中,信号发生器的初始振幅设置为识别电磁场强度阈值;连续波干扰抑制测试中,信号发生 器的振幅设置为识别电磁场强度阈值,干扰发生器的初始振幅设置为识别电磁场强度阈值以下(一般为0),而调制信号干扰抑制测试中,信号发生器的振幅设置为 高于识别电磁场强度阈值6dB,干扰发生器的初始振幅设置为低于识别电磁场强度阈值(一般为0);最大识别变化率和最大写变化率测试中,信号发生器的初始 振幅设置为高于识别电磁场强度阈值3dB(最大高于识别电磁场强度阈值9dB)。

测试指令

灵敏度降级、最大工作电磁场强度、生存电磁场强度、雷达散射截面变化率、最大识别变化率和最大写变化率测试中未对具体指令做规定;识别电磁场强 度阈值、峰值、读电磁场强度阈值、写电磁场强度阈值测试中分别采用盘存指令、读指令和写指令;干扰抑制测试中,连续波干扰抑制测试及调制信号干扰抑制测试 中指定特定指令,连续波干扰抑制测试中还需发送连续波。

测试结果取值

在识别电磁场强度阈值、读电磁场强度阈值、写电磁场强度阈值、灵敏度降级测试中,测试结果的取值为所有测试记录值中的最大值;最大工作电磁场强 度、生存电磁场强度、雷达散射截面变化率、干扰抑制、最大识别变化率、最大写变化率测试中,测试结果的取值为所有测试记录值中的最小值。

测试流程

不同测试内容之间的测试流程总体相似,但具体步骤稍有不同,如:读电磁场强度阈值和写电磁场强度阈值测试中,需要从第一个存储块开始测试,直到 最后一个存储块结束;灵敏度降级测试中需要对水平和垂直方向上各个角度进行测量;干扰抑制测试中,连续波干扰抑制测试时,直至标签不能响应调制信号指令时 停止测试,而在调制信号测试中,直至标签在制定幅度级别上响应50%期望的发生器指令时停止测试。

符合ISO/IEC18000-7协议的433.920MHz电磁传播型标签的功能测试

该部分规范了符合ISO/IEC18000-7的433.920MHz电磁传播型标签的功能测试内容和测试方法,包括:识别电磁场强度阈值和频率容限、读电磁场强度阈值和频率容限、写电磁场强度阈值、灵敏度方向性、干扰抑制、最大工作电磁场强度、生存电磁场强度。

相对前述类型的标签性能测试来说,符合ISO/IEC18000-7协议的433.920MHz电磁传播型标签的测试设置更加复杂:测试设备应 置于消声室或其他完全特定的位置,该位置要不受干扰源和传输(如特定信号反射、吸收或堵塞)的影响。测试使用的中心频率为433.920MHz,进行 50kHz的FSK调制,波形和时序根据ISO/IEC 18000-7中的定义。信号源输出必须在10dB步进的100dB范围内可调,且最大输出至少为10dBm。该信号的调制使用码形发生器生成相应的正确 命令和时序。测试中使用FSK接收器和解码器来接收、解码并发送标签响应到相应的监控软件,以便可以评估标签的响应。

对于不同的测试内容,测试流程是:首先设置所有的测试设备位置、配置信号源、安装标签,发送相应的指令,调节信号源直到测试标签发出可靠的响 应,然后根据不同的测试内容进行针对性的测量,并记录测试结果和计算测试内容的值。以识别电磁场强度阈值测试为例,流程图2所示。



图2:识别电磁场强度测试流程

不同测试内容的测试的差别主要存在于测试流程中的各个参数变化和指令差异等,具体为:

测试频率

识别电磁场强度阈值和频率容限、读电磁场强度阈值和频率容限、写电磁场强度阈值测试中,需要对433.900MHz、433.920MHz、 433.940MHz进行测试;灵敏度方向性、最大工作电磁场强度、存活电磁场强度测试中仅需要对433.920MHz进行测试;干扰抑制中,需要对 433.920MHz、434.170MHz、433.670MHz、434.420MHz、433.420MHz的干扰频率进行测试。

测试距离

识别电磁场强度阈值和频率容限、读电磁场强度阈值和频率容限、写电磁场强度阈值、灵敏度方向性、干扰抑制测试中,建议的标签位置到参考天线的测 试距离为2m,使用3m更好。最大工作电磁场强度、生存电磁场强度测试中,建议的标签位置到参考天线的最大测试距离为2m,使用1m更好。

测试指令

写电磁场强度阈值和频率容限测试中先发送Wakeup Header指令,接着发送write指令;其它测试项目中,先发送Wakeup Header指令,紧接着发送Collect指令。

测试结果取值

在识别电磁场强度阈值和频率容限、读电磁场强度阈值和频率容限、写电磁场强度阈值、灵敏度方向性测试中,测试结果取所有测量值中的最大值;干扰抑制、最大工作电磁场强度、生存电磁场强度测试中,测试结果取所有测量值中的最小值。

测试流程

不同测试内容之间的测试流程总体相似,但具体步骤稍有不同,如:在灵敏度方向性测试中,需要以15°步进旋转标签,水平方向分别在0、15、 30、45、60、75、90、105、120、135、150、165、180、195、210、225、240、255、270、285、300、 315、330和345度上进行测试,垂直方向分别在0、15、30、45、60、75、90上进行测量;在干扰抑制测试中,信号源强度设置为高于 ETHR Read 3dB,干扰信号源信号强度设置为低于ETHR Read 20dB,然后以3dB步进调节干扰信号源,测试标签的信道干扰抑制IRejection值,并在第一邻道( 250KHz)和第二邻道( 500KHz)上重复测试;最大工作电磁场强度测试中,需要在信号源和天线之间增加一个功放;存活电磁场强度测试中,需要先将信号发生器功率调节到高于 Emax,然后返回到ETHR Identification与Emax之间,并尝试读取标签。


在实际应用中,RFID系统的应用要综合考虑位置、距离、温度、湿度、干扰等诸多影响系统性能的因素。未经过测试的RFID系统,系统整体性能 不明确,可能会影响实际应用效果,甚至打击最终用户对RFID技术本身的信心。因此,在投资和实施RFID解决方案之前,按照测试方法和流程进行一定的测 试及仿真试验是非常必要的。ISO/IEC 18046-3是RFID标签性能测试方法,有利于标签选型及系统设计,有利于推进RFID系统的更好实施。


关键字:射频识别标签  性能测试  RFID系统 引用地址:射频识别标签性能测试研究

上一篇:负离子发生器工作原理
下一篇:无线技术应用在无人驾驶飞行器

推荐阅读最新更新时间:2024-11-12 03:22

电机性能测试系统的操作步骤及功能特点
科学技术的发展对电机性能和质量指标提出了越来越高的要求,电机测试技术的发展与电机工业的发展是密切相关的。传统的试验设备和方法由于操作时间长,需观测的仪器多,人工读取测试数据和进行数据分析、计算,在一定程度上影响了电机试验的质量和精度。随着电机设计水平、工艺水平的进一步提升,以及电机原材料的性能不断提高,电机的性能和质量指标有了很大的提高。因此,对电机测试技术的要求也日益提高。 电机性能测试系统是利用仪器、仪表及相关设备,按照相关的规定,对电机制造过程中的半成品和成品,或以电机为主体的配套产品的电气性能、力学性能、安全性能及可靠性等技术指标进行的检验。通过这些检验,可以全部或部分的反映被试电机的相关性能指标,用这些数据,可以判断
[测试测量]
电机<font color='red'>性能测试</font><font color='red'>系统</font>的操作步骤及功能特点
一种基于ARM11和RFID技术的智能物流管理系统设计
简介:本设计选择ARM11当下主流的MCU,结合RFID技术,采用固定式RFID的读卡器来采集信息,由串口发送至ARM11为核心的数据处理终端进行处理,以简便的方式实现了物流系统中对货品的出入库操作。 摘要:企业信息化建设的成败,取决于完备和真实的数据自动识别技术,就是利用计算机系统,进行信息化数据自动采集的一种信息技术。无线射频识别技术,RFID是自动识别技术的一种高级形式具有独特的技术优势。近年来RFID成为业界关注的焦点,RFID在物流和供应链管理中的应用得到空前,应用效果日益彰显,成为物流和供应链管理发展的巨大推动力。本设计选择ARM11当下主流的MCU,结合RFID技术,采用固定式RFID的读卡器来采集信息,由串口发
[单片机]
一种基于ARM11和<font color='red'>RFID</font>技术的智能物流管理<font color='red'>系统</font>设计
基于RFID的医疗器械智能控制系统设计
引 言 自从1895 年德国物理学家伦琴(W.K.Reontgen)在维尔茨堡大学物理研究所发现 X 射线开创人体影响诊断的先河以来,现代医学仪器在长达一个多世纪的发展中历久弥新,越来越多的新技术应用于其中。尤其是科学技术越来越发达的今天,包括计算机技术、网络技术、微电子技术、材料技术、生物技术所取得的巨大成就,无不为满足社会、家庭和个人对医疗仪器更广泛、更多样化的需求提供了技术基础。未来的医疗器械必然走向微型化、智能化、个性化和网络化,全新概念的现代医疗仪器,必将在 21实际实现“无缝”融入到社区环境和个人家庭之中,从而更好地为每个人的健康服务。 现代医疗仪器要走向智能化、个性化和网络化,身份识别是第一步,也是最关键的一
[单片机]
基于<font color='red'>RFID</font>的医疗器械智能控制<font color='red'>系统</font>设计
注射器滑动性能测试仪的相关技术分析
注射器滑动性能测试仪,卡式瓶泄漏性能滑动性能测试仪介绍: 卡式瓶又名笔式注射器用硼硅玻璃套筒,该瓶前部装有橡胶密封保护的注射用针头,瓶口用胶塞铝盖密封,尾部用橡胶活塞密封。 符合ISO7886《一次性使用无菌注射器》标准中的相关标准设计制造。 GB 15810-2019/附录E器身密合性 GB 15810-2019/附录C、D器身密合性 卡式瓶泄漏性能滑动性能测试仪完全符合YBB00152004-2015《笔式注射器用氯化丁基橡胶活塞和 垫片 》 YBB00162004-2015 《笔式注射器用溴化丁基橡胶活塞和垫片》 YBB00112004-2015《预灌封注射器组合件(带注射针)》等相关标准设计制造。 泄露试验:取
[测试测量]
Apple Watch防水性能测试:超出预期
    苹果在发布Apple Watch的时候,表示它具备最简单的防水功能,而且从今天的拆解中我们可以看到,Apple Watch在关键部位都加入了橡胶脚垫,确实能够在一定程度上起到防水作用。   那么,Apple Watch的防水能力到底如何呢?外媒带来了实际测试。   在测试中,外媒佩戴Apple Watch模拟5分钟淋浴,其中还加入了沐浴液肥皂水,测试结果显示,Apple Watch完全没有受到影响,对触摸屏和表冠反应正常。   随后,外媒决定将Apple Watch在水桶当中淹没5分钟,结果发现它的功能还是没有受到影响。   最终,外媒决定带着Apple Watch去游泳试试,这次它没能坚持下来。游泳15分钟之后
[手机便携]
是德科技联手CAICT 加速5G 新空口基站性能测试
是德科技公司(NYSE:KEYS)与中国信息通信研究院(CAICT)的合作成绩斐然,推动了 IMT-2020(5G)推进组组织的 5G 新空口(NR)基站性能测试。IMT-2020(5G) 推进组汇集了全球多家通信运营商、产品供应商、高校及科研机构。是德科技是一家领先的技术公司,致力于帮助企业、服务提供商和政府客户加速创新,创造一个安全互联的世界。 通过与 CAICT 密切合作,是德科技协助基站制造商根据 IMT-2020 测试要求精确、可靠地验证其产品的大规模 MIMO1 的性能。Keysight PROPSIM F64 5G 信道仿真解决方案可以仿真真实的无线信道环境,加速对新 5G 移动设备和基站进行性能验证,使它们更好
[网络通信]
一款高效反激式开关电源的设计以及性能测试
由于传统开关电源存在对电网造成谐波污染以及工作效率低等问题,因此目前国内外各类开关电源研究机构正努力寻求运用各种高新技术改善电源性能。.其中,在开关电源设计中通过功率因数校正PFC(Power Factor Correction)技术降低电磁污染及利用同步整流技术提高效率的研发途径尤其受到重视。 本文设计并制作了一种高效低电磁污染的开关电源样机。测试结果表明,该电源具有优良的动态性能、较高的功率因数和工作效率,且控制简单,故具有一定的实际应用价值。 开关电源设计方案 开关电源的结构如图1所示,它主要由220V交流电压整流及滤波电路、功率因数校正电路、DC/DC变换器三大部分组成。 220V交流电经整流供给功率因数
[测试测量]
一款高效反激式开关电源的设计以及<font color='red'>性能测试</font>
手机中FM调频性能测试方法简介
手机已经成为人们非常重要的通讯工具,相应手机整合的功能也愈来愈多。目前市面上的手机基本上都支持FM收音机功能,而FM收音机性能则主要是通过接收灵敏度、接收频带宽度、解调输出信噪比、解调输出失真度、接收解调输出幅度等指标来给予衡量,摩尔实验室(MORLAB)特撰此文就FM测试中的几个主要指标的测试方法做个简要介绍: 一、测试布置图与使用仪器 测试过程中所要用的仪器: 1,FM信号发生器(HP 8648B) 2,音频分析仪(R&S UPV) 另外,在测试灵敏度的时候为了减小外界的干扰,使结果更准确,应尽可能在屏蔽室里测试其灵敏度。 二、测试基本设置 信号源连接到手机FM收音机的射频输入端口,音频
[测试测量]
手机中FM调频<font color='red'>性能测试</font>方法简介
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved