等幅值变换和等功率变换对我们控制有什么影响?如何选择呢?

发布者:TranquilDreamer最新更新时间:2024-08-09 来源: elecfans关键字:等功率变换  控制 手机看文章 扫描二维码
随时随地手机看文章

什么是3S/2S坐标变换?

在《什么是SVPWM发波及其实际应用讲解》中我们说到:对于对称的三相电压

图片

在UVW三相静止坐标系下的合成矢量为逆时针方向旋转的电压矢量,旋转角速度和矢量幅值

图片

那么我们来详细分析一下,为什么对称的三相电压的合成矢量是这样的。

为了方便分析这个问题,我们在三相静止坐标系下再建立一个两相静止坐标系AB,其中A轴与U轴重合。

图片

根据矢量分解和合成的方法,我们可以把UVW三个轴上的独立瞬时电压分解到AB两个轴上,转换公式如下:

图片

对于三相正弦信号,使用上述转换公式变换到AB轴上,其表达式为:

图片

A轴和B轴之间的夹角为90°,所以合成矢量Us的幅值可以直接用勾股定理计算:

图片

图片

合成矢量的幅值固定为相电压幅值的(3/2)倍,合成矢量Us和A轴的夹角等于U相电压的相位角,这与前面分析一致。

这种将三相静止坐标系下的分量分解到两相静止坐标系下的变换方法就是3S/2S坐标变换。

从UVW到AB的直接变换矩阵为

图片

利用这种直接变换矩阵进行坐标变换后,AB坐标系下的合成矢量与UVW坐标系下的合成矢量幅值和相位完全相同。

什么是等幅值坐标变换?

虽然直接变换矩阵得到矢量与真实的矢量完全相同,但是其幅值为相电压幅值的(3/2)倍,缺少直观的物理含义,并不方便软件的使用。

如果我们对坐标变换矩阵乘以一个系数(2/3),新的坐标变换矩阵为:

图片

对于三相正弦信号,使用上述变换矩阵转换到AB轴上,其表达式为:

图片

合成矢量的幅值满足以下约束条件

图片

合成矢量幅值等于相电压幅值,这种坐标变换方法就是我们常说的等幅值变换。通过等幅值变换得到的合成矢量与真实矢量的相位相同,但是幅值不同。

等幅值变换是为了使计算得到的合成矢量幅值等于相电压的幅值,所以在直接变换矩阵前乘以(2/3)。

什么是等功率坐标变换?

接下来我们来讨论一下等功率变换。

等功率变换就是通过对直接变换矩阵乘以一个系数,使合成电压矢量和电流矢量的幅值乘积直接等于三相的总功率。

对于三相正弦的电压和电流量:

图片

三相的总视在功率

图片

我们假定等功率变换的矩阵系数为k,即等功率变换矩阵为:

图片

三相电压和电流经过等功率变换矩阵得到的矢量幅值为:

图片

要满足等功率变换的要求,则

图片

等功率变换矩阵

图片

对于三相正弦信号,使用等功率变换到AB轴上,其表达式为:

图片

等功率变换后的矢量幅值

图片

工控行业知名厂家的选择

等幅值变换和等功率变换都是为了算法实现的方便,人为的在直接变换矩阵基础上引入一个系数。那么除了等幅值变换和等功率变换,我们是否还有其他的选择呢?

这里电控小白给大家分享一个在实际工程产品上得到广泛应用的坐标变换方法:等有效值变换。等有效值变换的目标是使合成矢量的幅值直接等于相电压的有效值。

我们实际的电机和电机控制器产品都会有对应的铭牌参数,在工业控制领域,铭牌参数基本都是标注的电压和电流的有效值;因此采用等有效值变换得到的矢量幅值可以非常直观的和铭牌参数对应,这样我们就能通过矢量幅值清晰的掌控电机和电控的运行状态。

等有效值变换在国内外知名厂商的变频器产品上得到了广泛的使用,比如工控领域的世界领导者西门子和艾默生等。

接下来我们来分析一下等有效值变换的矩阵系数:假定系数k1,等有效值变换矩阵

图片

三相电压经过等有效值变换矩阵得到的矢量幅值为:

图片

等有效值变换矩阵为

图片

对于三相正弦信号,使用等有效值变换到AB轴上,其表达式为:

图片

等有效值变换后的矢量幅值

图片

什么是旋转坐标变换

通过前面的3S/2S坐标变换,虽然能将三相坐标系分量转换到两相静止直角坐标系下,对矢量的角度、幅值的分析和理解都更加方便;但是两相静止坐标系下的AB分量仍然是交流分量。

图片

在经典控制理论中,我们常用PI调节器实现对反馈信号对指令的跟随,虽然PI调节器的参数鲁棒性好,但PI调节器难以实现对高频指令信号的无差跟随,因此在实际工程中,几乎没有直接在两相静止AB坐标系进行矢量控制的。

对于三相对称信号,其合成矢量在静止坐标系下是以恒定角速度旋转的。

图片

因此我们只需要定义一个与合成矢量相同角速度旋转的坐标系DQ,那么合成矢量在这个旋转坐标系下的分量将变为直流分量

图片

将AB轴的分量分解到DQ轴上

图片

旋变坐标变换的矩阵为

图片

对等有效值变换后的AB分量进行旋转变换得到DQ轴分量为

图片

从上式也能看出,只要满足

图片

这样UD和UQ均为直流量,且UD和UQ合成矢量的幅值为Um,所以旋转坐标变换不会改变合成矢量的幅值。

DQ坐标系的旋转速度和Us相同,因此DQ轴系也叫同步旋转坐标系。

三种典型坐标变换系数整理

三种典型坐标变换的本质都是将三相静止坐标系下的分量变换到两相静止坐标系下,只是乘以了不同的系数而已,因此不同的坐标变换对控制系统的影响主要体现在计算其他物理量的系数差异而已,在这里电控小白为大家进行了整理。

图片

图片

总结

等幅值变换、等功率变换和等有效值变换并没有想象中的那么复杂和难以理解,它们只是出于不同的目的,在直接变换矩阵的基础上乘以了一定的系数。

对于坐标变换类型的选择并没有特殊的要求,只要选定坐标变换类型之后,在控制过程中计算相关的物理量时使用正确的系数就不会出现任何问题,它们对控制系统本身的稳定性并没有任何影响,影响的只是你的使用习惯而已。


关键字:等功率变换  控制 引用地址:等幅值变换和等功率变换对我们控制有什么影响?如何选择呢?

上一篇:PMSM矢量控制坐标变换之Clark变换
下一篇:聊聊永磁同步电机的一种安全状态:FreeWheel

推荐阅读最新更新时间:2024-11-08 08:43

电源分配控制解决方案
“一起重大安全事故的背后,已经发生过29起轻微故障,已经有300次左右的事故苗头或隐患”。任何一起事故都是有原因的,并且是有征兆的,及时发现并控制,安全事故是可以控制的,是可以避免的——海恩法则。因此,每一起安全事故背后都是有迹可循的。 ZLG的PDU电源分配解决方案,为提前发现事故隐患提供保障。随着汽车行业的发展,汽车电子系统复杂度也越来越高,系统电源的能耗管理、节点电源故障管理,负载诊断信息管理等也变得越来越重要。传统的汽车配电单元集成度不高,体积大等缺点已不能满足日益复杂的汽车系统需求。ZLG 基于市场的需求推出了PDU电源分配控制解决方案,实现12V/24V电源输出分配管理,替代传统的保险丝、继电器,实现电源能耗高效管
[汽车电子]
电源分配<font color='red'>控制</font>解决方案
LSI 丰富双核 MegaRAID 控制器解决方案
2012 年 3 月 6日,德国汉诺威 2012 年 CeBIT 展 – LSI公司(纽约证交所股票代码:LSI)推出具有更高 I/O 事务处理性能的全新 MegaRAID® SATA+SAS 控制器卡产品,可为高端数据库应用和数据中心负载提速。最新控制器采用 LSI® 双核 6Gb/s SAS 片上 RAID (ROC),具有业界最高的服务器 RAID 性能(每秒 RAID 5 随机 I/O 高达 200,000 次),以及智能化闪存高速缓存和增强型数据保护功能 ,能够高速可靠地为关键任务应用提供数据。 基于闪存的特性和功能: • 支持MegaRAID Fast Path软件,为连接到 MegaRAID 控制器的固态硬盘(S
[半导体设计/制造]
永磁同步电机矢量控制理论
矢量控制是一种交流电机控制理论,由德国西门子公司的F.Blaschke于1971年提出。 它的基本思想是模仿直流电机的磁场定向方式,将交流电机的定子电流分解为与转子磁链同方向的励磁分量和与磁链方向正交的转矩分量,将励磁分量和力矩分量进行解耦,便于控制器实现,从而实现对交流电机的精确速度和转矩控制。 永磁同步电机矢量控制的框图如下: 图1 永磁同步电机矢量控制框图 从图1可以看出,要实现永磁同步电机的矢量控制需要以下几步: (1)测量流过电机相绕组电流Ia、Ib、Ic; (2)将Ia、Ib、Ic进行Clark变换到α-β坐标系; (3)将Ialpha-Ibeta进行Park变换得到Id、Iq (4)将目标电流和反馈电流进行P
[嵌入式]
永磁同步电机矢量<font color='red'>控制</font>理论
小马智行与新石器达成合作,定制研发自动驾驶域控制
3月22日,据小马智行官微消息,小马智行宣布与无人配送领域企业新石器达成战略合作,双方将联合定制研发车规级自动驾驶域控制器,由NVIDIA DRIVE提供支持。 图片来源:小马智行 域控制器是汽车电子电气架构集成化过程中的产物。汽车智能化功能的日渐增加使得汽车电子架构一步步向中央集成靠近,自动驾驶域控制器也成为行业发展的重点领域。 目前涉足自动驾驶域控制器的厂商包括特斯拉、蔚来等车企,以及博世、大陆、德赛西威、均胜电子等国内外头部供应商。 小马智行于2022年中推出自动驾驶域控制器产品,于2023年初正式命名为“方载”,“方载”系列产品可采取定制方式,目前已经取得一批定点用户。 此次小马智行与新石器联合定制研
[汽车电子]
小马智行与新石器达成合作,定制研发自动驾驶域<font color='red'>控制</font>器
内置SED1520控制驱动器的图形液晶显示模块MGLS-12032在智能测试仪中的应用
    摘要: 文章介绍了内置SED1520图形液晶显示模块MGLS-12032的特点和工作原理,给出了MGLS-12032与8031单片机的接口电路,介绍了SED1520的指令集,并结合具体实例给出了显示模块的相关程序。     关键词: 图形显示 液晶 单片机 SED1520 MGLS-12032 1 SED1520功能特点 SED1520是集行、列驱动器和控制器于一体的液晶显示控制驱动器,可广泛用于小规模液晶显示模块,例如香港精电公司的MGLS-12032、MGLS10032等。 SED1520液晶显示驱动器具有以下特性: ●内置显示RAM区,RAM容量为2560位。RAM中的1位数据控制
[电源管理]
爱特梅尔推出全球最低功耗的32位闪存微控制器具备以太网和USB OTG功能
AVR32 UC3A在66 MHz速率下提供80 Dhyrystone MIPS性能;而电流消耗仅为 40 mA 爱特梅尔公司 (Atmel Corporation) 宣布推出业界最低功耗的32位闪存 (Flash) 微控制器系列。UC3A系列基于爱特梅尔的AVR 32 UC内核,配有512KB 的闪存、一个内置10/100以太网媒体接入控制器 (MAC)、一个具有OTG (on-the-go) 功能的全速 (12Mbps) USB 2.0接口,以及一个 SRAM/SDRAM 外部总线接口。 首批推出的产品型号为AT32UC3A0512 和 AT32UC3A1512,能够以66MHz的速率提供80 Dhrystone MIPS
[新品]
三轴惯性陀螺测试转台控制系统的研制
摘要:介绍了三轴惯性陀螺测试转台的工作方式及其控制系统的功能,研究了以8051单片机为系统控制核心的转台控制器的硬件及软件设计问题,提出了采用8051单片机及Intel 8254定时/计数器对步进电机进行开环位置及速度控制的解决方案。 关键词:陀螺测试转台 单片机 步进电机 运动控制 导航系统是飞行器的重要组成部分。 惯性陀螺仪表普遍应用于各种类型的飞行器的导航系统中,它反映了飞行器的飞行姿态以及其它重要导航信息,保证了人为或自动驾驶仪对飞行器进行控制的安全性与准确性。为了确保惯性陀螺仪表工作的可靠性,需要对仪表进行定期的校验,用测试转台测试陀螺仪表是比较常用的方法。某机场所使用的测试转台大部分存在老化严重以及功能单一的问
[应用]
3分钟即被远程控制!智驾安全如何保证?
2024年10月24日,在GEEKCON大会上,一支安全团队通过现场演示的方式展示了如何破解一辆 智能汽车 的防护系统,利用 远程控制 手段解锁并启动了车辆。该演示揭示了智能汽车在 车联网 系统中潜在的 网络安全 隐患,并引发了业内外对智能汽车安全性的高度关注。事件所揭示的问题表明,随着智能汽车和车联网技术的迅猛发展,汽车的网络安全问题日趋严峻。 事件回顾:车联网安全漏洞曝光 在此次GEEKCON黑客大会上,主办方安排了一辆智能汽车进行现场演示。裁判首先对车辆进行了物理锁定,并将车辆的车架号(Vehicle Identification Number, VIN)发送给场内的黑客挑战者。车架号就如同汽车的身份证号,在多数车辆
[汽车电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved