伺服控制芯片TMC4671性能概述

发布者:GoldenHarmony最新更新时间:2024-08-13 来源: elecfans关键字:TMC4671  伺服控制器 手机看文章 扫描二维码
随时随地手机看文章

  伺服控制芯片TMC4671性能概述

  使用TMC4671伺服控制芯片可以加速设计伺服控制器。

  TMC4671是一款完全集成伺服控制芯片,为直流无刷电机、永磁同步电机、2相步进电机、直流有刷电机和音圈电机提供磁场定向控制。

  所有的控制功能都被集成在硬件上。集成了ADCs、位置传感器接口、位置差值器,该款功能齐全的伺服控制器,适用于各种伺服应用。

  

  TMC4671旨在快速缩短高性能伺服控制器的上市时间,同时最大限度提高驱动效率和动态性能。通过硬件中的所有时间关键计算,开发动态伺服控制器仅需要几行代码。

  它具有高达100kHz的开关频率和控制器更新速率,并具有滤波和插值功能,如数字霍尔信号插值,以实现更顺畅的操作。该集成电路可以与各类编码器协同工作:从A/B/Z增量式简单的数字或模拟霍尔传感器到高分辨率正弦/余弦模拟编码器。传感器可灵活地映射为位置和速度控制回路的输入。凭借其delta-sigma电流检测ADC,TMC4671非常适合用于隔离式delta-sigma前端。

  

  图2. 系统框图

  功能简介:

  伺服控制芯片、空间磁场矢量控制(FOC)

  转矩控制(FOC)、速度控制、位置控制

  前馈控制输入

  集成ADCs、前端△∑ADCs

  编码器引擎:模拟和数字霍尔、模拟和数字编码器

  支持三相直流无刷伺服和永磁同步伺服电机、2相步进伺服电机、直流有刷和音圈电机

  先进的PWM引擎(25KHz…100KHz)

  应用程序SPI+调试(UART、SPI)

  脉冲/方向接口

  

  图3. 硬件框图

  性能描述:

  ○ 带有磁场矢量控制(FOC)的伺服控制芯片

  转矩控制模式

  速度控制模式

  位置控制模式

  电流控制刷新频率和最大的PWM频率为100KHz (速度和位置控制的刷新频率可以根据当前电流刷新频率的倍数配置)

  ○ 控制功能/ PI控制器

  中期结果的输入和输出可编程斩波

  以积分电路结尾保护所有控制

  可编程的电压循环向导限制器

  目标值的前馈补偿和前馈摩擦补偿

  高级前馈控制结构,实现最佳轨迹跟踪性能

  扩展的中断请求掩蔽选项和限制器状态寄存器

  具有霍尔传感器或/和最小移动的高级编码器初始化算法

  ○ 运动控制和坡形控制

  控制结构的梯形速度斜坡

  脉冲/方向接口,方便定位

  ○ 支持的电机种类

  直流无刷电机

  永磁同步电机

  2相步进电机

  直流有刷电机

  音圈电机

  ○ 位置反馈

  开环位置发生器(可编程的PRM,RPM/S)用于初始化配置

  数字增量编码器(ABN,ABZ 高达5MHz)

  第二路数字量编码器输入(双反馈)

  数字霍尔输入接口带有临时位置插补功能(H1, H2, H3 resp. HU, HV , HW)

  模拟量编码器/模拟量霍尔输入接口(SinCos (0°, 90°) or 0°, 120°, 240°)

  多圈位置计数器(32位)

  目标位置、速度和目标转矩滤波(双阶)

  ○ PWM包括SVPWM

  可编程的PWM频率范围从20KHz100KHzn

  可编程的BBM(BrakeBeforeMake)时间(偏低,偏高)0 ns 。 。 。 2.5_s在10ns步骤内和栅极驱动输入信号

  PWM自动调整,用于运动期间改变PWM频率

  ○ SPI通讯接口

  40位数据长度(1个ReadWrite位+7个地址位+32个数据位)

  立即SPI读取响应(通过单个数据报进行寄存器读取访问)

  SPI时钟频率高达1 MHz(未来版本为8 MHz)

  ○ TRINAMIC实时监控接口(SPI Master)

  通过TRINAMIC的实时监控系统实现实时数据高频采样

  需要PCB上的单个10针高密度连接器

  高级控制器通过频率响应识别和高级自动调谐支持使用TRINAMIC IDE调整选项

  ○ UART调试接口

  3引脚(GND, RxD, TxD) 3.3V UART接口(1N8; 9600 (default), 115200, 921600, or 3M bps)

  简易寄存器访问并行于嵌入式用户应用程序接口(SPI)

  ○ 供电电压:5V和3.3V;1.8V的VCC_CORE由内部产生

  ○ IO电压:3.3V用于所有的数字(可由VCCIO选择提供);5V插分模拟量输入范围,3V为单端输入范围

  ○ 时钟频率:25MHz(需要外部振荡器)

  ○ 封装:QFN76


关键字:TMC4671  伺服控制器 引用地址:伺服控制芯片TMC4671性能概述

上一篇:PLC基础编程软件的四种形态解析
下一篇:电动机点动控制电路图 两地控制电动机启停电路原理图

推荐阅读最新更新时间:2024-11-10 15:19

基于COMX和STM32的机器人伺服控制器电路设计
  设计了基于COMX和STM32的机器人伺服控制器解决方案。首先介绍了COMX模块的功能及结构,然后设计了基于FSMC的接口电路来控制COMX。系统采用实时工业以太网EtherCAT协议作为机器人伺服系统的底层协议,同时构建伺服从站控制器。实时以太网技术简化了一般总线的互操作性和实时性等方面的问题,能满足控制网络传输的实时性要求,EtherCAT工业以太网技术以其网络实时性高、速度快、拓扑结构灵活等优点得到广泛关注。本控制器采用德国赫优讯公司开发的嵌入式实时以太网模块COMX来完成EtherCAT通信的功能,采用STM32为主控制器,由STM32来控制电机和COMX的工作流程。    硬件电路模块   本伺服控制器主要用于机
[单片机]
基于COMX和STM32的机器人<font color='red'>伺服</font><font color='red'>控制器</font>电路设计
基于伺服电机和运动控制器的目标仿真实时性设计
众所周知,激光制导武器是以敏感到的特定激光信号为制导信息。在激光制导武器的半实物仿真系统中,目标仿真和制导仿真具有同等重要的地位。这是因为激光目标模拟的准确性影响到系统的整体仿真精度和可靠性,甚至可以说目标仿真系统的研制水平决定仿真大系统水平 。因此,目标仿真是提高半实物仿真系统整体精度的关键,“如何逼真地模拟激光目标”就成为仿真中重要的问题 。   目标仿真系统研究的是能够实时精确的模拟战场环境中导引头入瞳处接收到的各种目标反射编码激光的光学特性。具体来说就是在计算机和电机控制器的控制下实时控制激光能量和光斑大小的变化,并以此来模拟激光航弹导引头入瞳处的激光目标特性、能量变化特性和光斑大小变化特性。这种精确的模拟要求对目标的位
[模拟电子]
基于<font color='red'>伺服</font>电机和运动<font color='red'>控制器</font>的目标仿真实时性设计
伺服控制器怎么调_伺服控制器伺服驱动器的区别
  伺服控制器怎么调   伺服控制器的调试需要根据具体应用场景和控制器型号进行具体设置和调整。一般来说,伺服控制器的调试包括以下几个方面:   电气参数调整:包括电机的参数设置和校准、驱动器参数的设置、电源的输出调整等。这些参数的设置需要根据具体控制器的说明书和应用场景进行调整。   控制模式选择:伺服控制器通常有多种控制模式可供选择,例如位置控制模式、速度控制模式、力矩控制模式等,需要根据实际应用场景进行选择。   PID参数调整:伺服控制器通常采用PID控制算法,需要根据实际应用场景进行PID参数的设置和调整,以获得更好的控制性能。   运动参数调整:包括加速度、减速度、最大速度等运动参数的设置和调整,需要根据实际应用场景进行
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved