什么是变频器?
变频器是通过应用电力电子技术,改变电机工作电源频率,以控制电机不同转速的电力控制设备。
变频器主要有整流电路、缓冲电路、滤波电路、逆变电路等组成(附图1)。
附图1
整流电路:主要由整流桥组成;将交流电(市电)经过全桥整流后成直流电。对于三相380V的交流电,经整流后,直流电压理论值为380X1.414≈537V;而单相220V的交流电,经整流后,直流电压理论值为220X1.414≈310V。
缓冲电路:抑制在上电瞬间的冲击电流。由电解电容的工作原理可知,变频器在上电瞬间,电容的两端电压不会突变,而电容两端的电流会突变,此时电容两端相当于短路。若没有缓冲电路(充电电阻),整流桥会因为电流过大而损坏。缓冲电路起到了保护整流桥的作用。
滤波电路:一般电解电容的耐压值为400V;而三相380V的交流电,经整流后,直流电压理论值约为537V。因此滤波电容器,只能由两级电解电容串联而成。由于电解电容的容量不可能绝对相同,串联之后两级电解电容上的电压分配是不均衡的,会导致两个电解电容的使用寿命不一样。为了解决电压不均衡的问题,需在两个电解电容两端分别并联阻值相同的均压电阻。
逆变电路:将直流电(直流母线)转换成交流电的电力电子电路。在逆变桥里的多个IGBT组成。每个IGBT里都集成一个续流二极管,其作用是为电机的定子绕组反馈能量(电机发电)提供回路。当电机处于发电状态时,其电能可通过续流二极管流向直流回路,电解电容充电。
变频器有哪些功能特点?
1. 软启动功能
用市电直接启动电机,其启动电电流为电机额定电流的5-7倍。这种电机直启情况下,会导致电网电压下降,影响其他用电设备的正常运行。
采用变频器软启动,其启动电流一般为额定电流的1.2-1.5倍,有效地降低了启动冲击电流,减少变压器的占有量(附图2)。
附图2
2. 变频调速
传统的电机调速为变极调速;根据三相异步电动机同转速:
可通过改变电机定子绕组的磁极对数,就能改变它的同步转速,从而改变转子转速。通过绕组的不同组合连接方式,一般可得到两极、三极、四极速度。调速范围较窄,一般为双速(附图3)。
极对数p | 每个电流周期磁场转过的空间角度 | 同步转速n0=60f/p (f=50Hz) |
p=1 | 360° | 3000(r/min) |
P=2 | 180° | 1500(r/min) |
P=3 | 120° | 1000(r/min) |
P=4 | 90° | 750(r/min) |
附图3
变频调速是根据电机转速与工作电源输入频率成正比的关系:
通过改变电动机工作电源频率f达到改变电机转速的目的。其调速方式便利,可根据不同的工艺,给予电机不同的转速(附图4)。
附图4
3. 节能效果
在各种风机、水泵、油泵中,空气或液体产生的阻力大致与电机转速的2次方成正比,所需的功率与电机速度的3次方成正比。
当所需风量、流量减少时,利用变频器调速的方式来调节风量和流量,可以大幅度地节约电能。附图5为泵类负载节电理论依据。
转速n% | 流量% | 轴功率% | 节电率% |
100 | 100 | 100 | 0 |
90 | 90 | 72.9 | 27.1 |
80 | 80 | 51.2 | 48.8 |
70 | 70 | 34.3 | 65.7 |
60 | 60 | 21.6 | 78.4 |
50 | 50 | 12.5 | 87.5 |
附图5
关键字:变频器 电机
引用地址:
一秒教你读懂变频器
推荐阅读最新更新时间:2024-11-07 22:31
伺服电机编码器的学习
伺服电机编码器 伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算一种特殊的伺服编码器,市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有可靠,便宜,抗污染等特点,有赶超光电编码器的趋势。 原理 伺服编码器这个基本的功能与普通编码器是一样的,比如绝对型的有A,A反,B,B反,Z,Z反等信号,除此之外,伺服编码器还有着跟普通编码器不同的地方,那就是伺服电机多数为同步电机,同步电机启动的时候需要知道转子的磁极位置,这样才能够大力矩启动伺服电机,这样需要另外配几路信号来检测转子的当前位置,比如增量型
[嵌入式]
基于labview的工控机与变频器间通讯的设计和实现
1 引言 风力发电机组中的齿轮箱是一个重要的机械部件,而其中轴承性能的好坏对齿轮箱的性能起着至关重要的作用。根据用户要求,齿轮箱轴承出厂前要在模拟实际工况的试验机上进行测试。即齿轮箱轴承需在不同转速、载荷下进行性能试验和寿命试验。齿轮箱轴承转速的改变是由变频器驱动变频电机实现的。变频器运行频率的设定有三种方法:一是通过面板手工调节,这种方式已经不能满足频率频繁变化时使用需要。二是通过变频器的外部接口,外接模拟信号来控制设定频率。这种方式虽然简单,但存在设定频率不准确的问题,当外接模拟信号波动时,变频器的设定频率也随之变化。三是通过变频器的通讯口,利用参数设定指令来进行频率参数设定。这种方法能准确地控制变频器的频率。下面以台达
[模拟电子]
伺服电机做负载的优势
摘要:伺服电机多用于高精尖的控制系统,它具有多样化智能化的控制方式,并带有反馈系统,完成闭环控制。在测功机中,可以进行对拖,伺服电机将控制特性的优势进一步扩大。
测功机主要分为机柜和台架两部分,而台架主要有被测电机,扭矩转速传感器,机械负载。当前多选用伺服电机作为负载。伺服电机将电信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性。
图1 伺服电机可以进行电机对拖,公共直流母线采用单独的整流/回馈装置,为系统提供电能,调速用逆变器直接挂接在直流母线上,当系统工作在电动状态时,逆变器从母线
[嵌入式]
单片机驱动步进电机程序
NS-6型实验板驱动步进电机 控制输出为P1口 由8050,8550做功率输出驱动PH266-E1.2按K1键,电机由慢变快作加速度顺时针旋转按K2键,电机由慢变快作加速度逆时针旋转 注:本试验只为初学者掌握单片机驱动步进电机的原理,其硬件配置只做为短时间试验演示不可持续过长时间,亦不可实际中使用 电路如下图: ? ;尼士单片机 ;任风逍遥 ;步进电机驱动程序 ;2004/8/8 ;NS-1试验板驱动步进电机 ;K1驱动步进电机顺时针转动,K2驱动步进电机逆时针转动 org 000h ajmp aa org 010h ;马达正转 aa: mov 20h,#50 JB P3.6,Bb;如果P3.6为1则转到Bb如
[工业控制]
基于矢量控制的高性能异步电机速度控制器的设计
可靠性和实时性是对控制系统的基本要求,最初的电机控制都是采用分立元件的模拟电路。随着电子技术的进步,以脉宽调制(PWM)为基础的变频调速技术已广泛应用于电机控制中。在数字化趋势广泛流行的今天,集成电路甚至电机控制专用集成电路已大量应用在电机控制中。特别是最近几年兴起一种全新的设计思想,即基于现场可编程门阵列(FPGA)的硬件实现技术。该技术可以应用于基于矢量控制的异步电机变频调速系统中。FPGA本身是标准的单元阵列,没有一般的IC所具有的功能,但用户可以根据自己的需要,通过专门的布局布线工具对其内部进行编程,在最短的时间内设计出自己的专用集成电路,从而大大地提高了产品的竞争力。由于FPGA以纯硬件的方式进行并行处理,而且不占用
[工业控制]
高压电机控制系统的分析与设计
在现代机器人设计中,头部、颈部、四肢的任何活动都需要各种各样电机的支持,如传统的旋转电机、步进电机、直线电机和其它特殊电机,但这些电机的驱动和控制要求各有不同,如何实现各种电机的精确控制解决方案?如何以最低的功耗实现对它们的控制?常常对设计师来说是一大挑战。本文将详细地讨论高压电机控制系统的各核心子系统在具体实现时应注意哪些问题。 高压交流(HVAC)电机、工业逆变器或高压永磁无刷电机是高电压系统的几个例子,它们典型地按他们的马力进行分类。虽然仍是最常见的,但其他类型电机也已经出现,如直线电机和内嵌各种激励器实现的齿轮头电机。数字电机控制解决方案允许精确地控制这些机械驱动机构的位置、速度和转矩。在这类大型机械驱动机构中的MOSFE
[机器人]
变频器低电压跳闸如何解决
变频器低电压主要是指中间直流回路的低电压,一般能引起中间直流回路的低电压的原因来自两个方面: 1、来自电源输入侧的低电压 正常情况下的电源电压380V,允许误差为-15%~10%,经三相桥式全波整流后中间直流的电压值为513V,个别情况下电源线电压较小的电压波动,也不会造成变频器的低电压跳闸,只有电网电压有效值介于额定值的80%~85%之间,并且持续时间达一个周期以上,才会引起变频器动作。电源输入侧的低电压主要是由于电网电压的波动或主电力线路切换、雷击使电源正弦波幅值受影响、电厂本身的变压器超载或负荷不平衡等。 2、来自负载侧的低电压 这方面的原因主要是大型设备启动和应用、线路过载或启动大型电动机等。变频器是由整流器和逆变器两
[嵌入式]
爱普特32位MCU在电机控制上的应用
在物联网飞速发展的科技时代,电机作为各类设备的动力核心,其控制技术的优劣直接决定了设备的性能和效率。而爱普特 32 位 MCU 的出现,为电机控制领域带来了全新的突破和变革。 电机,这个看似普通却又至关重要的装置,如同现代社会的“隐形引擎”,默默驱动着我们生活和工业生产的方方面面。从日常的家用电器,到复杂的工业机械,电机无处不在。然而,要让电机稳定、高效、精准地运行,并非易事。这背后离不开先进的控制技术,而其中的关键之一,就是高性能的 MCU 芯片。 在电机的广泛应用中,其工作环境往往十分苛刻。各种外界因素,如温度的剧烈变化、机械振动的冲击、电流的波动以及复杂的电磁干扰等,都可能对电机的正常运行造成影响。为了应对这些挑战,
[嵌入式]