01
FOC算法
FOC(Field Oriented Control)磁场定向控制,也称是Vector Control矢量控制。电机的磁场通常包括三种,定子磁场,气隙磁场,转子磁场。对于永磁电机控制最常用的定向方式就是转子磁场定向,将选择坐标系的d轴定在转子永磁体的N极。
此外,对于PMSM的控制都是建立在与转子磁通同步旋转的dq轴坐标系的,得到数学方程
式中:
通过控制PMSM的d轴电流和q轴电流来控制电机的转矩。通过控制逆变器的输出电压来控制电机的d轴电流和q轴电流。控制框图如下[1],给定d轴电流和q轴电流,通过电流控制器控制电机实际的d轴电流和q轴电流跟随给定值变化。电流控制器的设计方法很多,在此不再累述。
FOC控制框图
对于各个环节的信号的波形可以参考下图[2],
FOC控制信号示意图
由于输入是三相静止坐标系下的三相电流,需要通过Clarke和Park变换至dq轴同步坐标系下,此外在dq轴同步坐标系下电流控制器输出的dq轴电压也需要通过Clarke和Park逆变换至三相静止坐标系
关于Clarke Transform和Inverse Clarke Transform请参考MATLAB帮助文件的链接,一般情况下我们都是使用幅值守恒变换。
02
FOC算法的Simulink模型
Simulink模型如下:
FOC算法的Simulink模型
Current Controller的Simulink模型
关键字:永磁同步电机 Simulink模型
引用地址:
永磁同步电机控制系统仿真—FOC控制算法的Simulink模型
推荐阅读最新更新时间:2024-11-12 13:20
异步感应和永磁同步电机这两种有什么优缺点呢?
纯电动汽车上经常会看到配备异步感应电机和永磁同步电机的车型。那这两种电机技术有什么优缺点呢?随着小星通过蔚来ES6车型和蔚来汽车发布的相关专利来聊一聊吧。 ↑动力电机能量传输示意图 动力电机的能量传输过程包括:能量储存系统的直流电能,在动力控制系统的功率控制下将直流电转换成交流电提供给电动机单元,电动机单元内的转子在交流电所产生的磁场的作用下旋转,从而将电能转变成机械转动力,通过输出轴将该转动力输出至变速箱单元,变速箱单元通过其内部的各齿轮机构的配合使该转动减速,并经过差速齿轮的调整后,输出至车轮的半轴。 ↑异步感应电机(右)和永磁同步电机(左)内部结构 从异步感应电机和永磁同步电机的内部结构就可以很明显区分两种电机技术。
[嵌入式]
带编码器的永磁同步电机
机器人已经开始在工厂自动化处理中发挥着重要的作用,它们代替工人进行焊接、涂装、装配、切割、码垛堆积,和机器可以更经济、更快速和更准确完成的一些常规操作。本文从电机控制角度重点介绍了系统描述和需求。 需求 无论是线性的还是铰接式的机器人架构配置,大部分应用都要求高精度的机械臂运动。 因此,电机控制策略采用位置控制环路,其中实际位置由位置传感器来捕获,通常增量编码器或绝对编码器的分辨率都非常高。机器人系统的自由度(DOF)即移动关节数与所使用的电机数是相等的。结果是,DOF的值越高,每个电机的移动精度要求就越高,因为每个电机产生的位置误差是相乘的。在这些种类的应用中,需要具有数以百万计脉冲的编码器。与焊接或铣削数控机床相比,冲孔或
[嵌入式]
foc电机控制算法的调试经验总结
本文分享foc电机控制算法的调试经验,针对的场景是往一套新的控制板卡上移植一套电机控制软件。 具体调试过程是 发波= 电流反馈= 环路= 角度 将调试过程分解为以下步骤。 确认pwm模块正常 确认svpwm发波正常 确认电流反馈正常 引入电机角度 评估角度精度 下文中对移植调试的步骤分解,并给出每一个调试步骤的软件框图。 1、确认pwm模块正常 1.1、确认母线电压和实际测试值一致。 1.2、三相输出悬空,三相输出寄存器分别给固定占空比,测量各相对的波形,看是否和给定占空比一致。 2、确认svpwm发波正常 2.1、连接电机或其他三相对称负载。 2.2、参考以下框图,选取较低频率,生成固定转速强制角。给电压
[嵌入式]
foc电机控制需要几个pwm foc控制算法介绍
foc电机控制需要几个pwm FOC(Field-Oriented Control)电机控制需要使用两个PWM信号来控制电机,具体分为一般PWM和扩展PWM两种。 一般PWM用于控制电机的直流母线电压,其输出频率一般为几千赫兹,可以有效地抑制电机的噪声和震动。通过PWM的占空比来调节直流电压,从而实现对电机的调速和调转矩。一般PWM一般由开发板或者控制芯片的内置模块实现。 扩展PWM用于控制电机的电流,其输出频率的设置一般要远远低于一般PWM的频率,以保证电路的稳定性和控制精度。扩展PWM的任务是将控制算法的电流控制命令转换为电机的相电流,从而实现对电机的转矩和速度控制。在FOC控制中,扩展PWM一般需要由开发者根据自身电
[嵌入式]
基于STM32交流永磁同步电机对控制单元和功率驱动单元的设计
引言 近年来,随着微电子技术、电力电子技术、现代控制技术、材料技术的迅速发展以及电机制造工艺水平的逐步提高,交流永磁同步电机以其体积小、结构简单等特点在工农业、日常生活以及许多高科技中迅速得到了广泛的应用。因此,研究设计高精度、高性能的永磁同步电机成为现代电伺服驱动系统的一个发展趋势。 伺服驱动器按照功能特征可分为功率板和控制板两个独立的模块,本文在分析交流永磁同步电机控制性能的基础上分别对控制单元和功率驱动单元进行了具体的设计。控制单元作为伺服系统的核心,要求有较高的性能,为此,论文采用意法半导体推出的STM32作为控制核心芯片。它是基于ARM先进架构的Cortex-M3为内核的32位微处理器,主频可高达72 MHz。强大的
[单片机]
基于TMS320F28035的永磁同步电机矢量控制系统研究
永磁同步电动机(PMSM)具有体积小、重量轻、结构多样、可靠性高等优点。在数控机床、工业机器人等自动化领域得到了广泛的应用。数字化交流伺服调速系统采用的是目前非常流行的矢量控制算法,即电压空间矢量脉宽调制(SVPWM)。SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成脉宽调制(PWM)波,以所形成的实际磁链矢量来追踪其准确磁链圆。 由于矢量控制算法对采集PMSM转子的电流、电压等参数的实时性要求很高,且计算量大,一般的微处理器很难达到要求。因此,文中采用TI公司C2000系列高压数字电机开发
套件,利用其DSP芯片TMS320F28035高速
[嵌入式]
机车TCMS网络控制系统自动化仿真测试平台
随着技术的不断更新,客户对机车运行的稳定性、安全性和可靠性的不断提高,机车网络控制系统作为机车的信息通讯核心,其安全性和可靠性显得尤为重要。由于 机车网络控制系统的复杂性,对其进行准确调试的难度很大,因此在进行完调试的基础之上,对机车网络进行测试是非常重要的。为克服传统网络控制系统测试过程 中的诸多困难,采用TCMS网络控制系统自动化测试平台。 解决方案 TCMS网络控制系统自动化测试平台结构如下图所示: 网络控制系统自动化测试平台可以分为机车仿真系统和测试总控系统两个部分。机车仿真系统采用以太网TCP/IP为其主干网络,包括:TCMS网络;分布式 实时仿真系统,模拟机车各子系统;虚拟驾驶与场景,实现虚拟驾驶
[测试测量]
永磁同步电机控制太难?
永磁同步电动机是由电励磁三相同步电动机发展而来。它用永磁体代替了电励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相同步电动机基本相同,故称为永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)。用于矢量控制的PMSM,要求其永磁励磁磁场波形是正弦的,这也是PMSM的一个基本特征。 FOC——磁场定向控制(FieldOriented Control)通常称为“矢量控制”,是通过控制变频器输出电压的幅值和频率控制三相交流电机的一种变频驱动控制方法。通过测量和控制电机的定子电流矢量,根据磁场定向控制原理分别对电机的励磁电流(Id)和转矩电流(Iq)进行控制,从而将三相交流电机等
[嵌入式]