六个术语(DAC、ADC、DSP、codec、运放、耳放)解析

发布者:rockstar6最新更新时间:2024-09-06 来源: elecfans关键字:DAC  ADC  DSP  codec  运放  耳放 手机看文章 扫描二维码
随时随地手机看文章

ADC和DAC、DSP

ADC是模拟转数字信号编码芯片,例如TLV320ADC,DAC是数字转模拟信号解码芯片,例如ES9028,前者一般用于录音而后者一般用于解码音频。中间数字信号处理过程交由DSP进行操作。模拟信号从ADC输入,经过编码变成数字信号,交由DSP进行运算和处理,最终交给DAC将数字信号重新解码为模拟信号后输出。


运放和耳放

耳放是一类产品的名称,而不是芯片类型。一个耳放里面可能会有多个运放芯片,例如OPA1612和OPA2604。另外,运放芯片之间也有分类,有些只作用于外放而不作用于耳机,例如NXP的TFA9890。有些只作用于耳机而不作用于外放,例如Maxim的MAX97220。而OPA1612和OPA2604这两块运放芯片能够同时作用于耳机和外放。


codec和独立DAC

一直以来我们总以为codec一定是集成在SoC之中的,而独立DAC则是外置于SoC,所以通过芯片之间位置排列能够很好地识别codec和独立DAC,其实这是错误的想法。

codec也能够独立于SoC,例如三星和苹果手机的codec一般都独立于SoC,也算是独立的音频芯片。换句话说,三星S7(骁龙820版)那颗Qualcomm家的WCD9335 codec也是独立的音频芯片,只是解码效果没有CS4398之类的芯片好而已。同理,vivo Xplay5同时拥有WCD9335 codec和CS4398 DAC两颗解码芯片。为啥codec没有独立的DAC那么好?


codec同时集成ADC、DAC以及其它各种音频相关模块,例如AK4961就是同时集成ADC、DAC和amp功能,是一套完整的音频方案,按道理应该比只懂得解码,无法独立使用的独立DAC要强大吧?问题就在专注度上。codec整合功能多了,兼顾的事情就自然多了,运算量自然会被多种功能模块分摊调度,解码效率和效果自然就不及独立DAC好了。


前几年仿佛更流行三种芯片都独立出来的Hi-Fi方案,例如vivo Xshot,TLV320ADC+CS4398+MAX97220。自SABRE9018Q2C和ES9118这些高整合了运放芯片的DAC出现之后,业界仿佛也开始关注起这种全新的Hi-Fi方案。这样做最大的好处就是节省了手机内部空间,同时也能够继续满足消费者喜欢在Hi-Fi电路上堆料的心病,集成度在codec和独立DAC之间,兼顾解码效果和效率。


最后让我们看看市面上独立DAC、整合了运放芯片的DAC和codec三种方案的主流Hi-Fi芯片,以及对应的机型都有哪些?

独立DAC系列:

主流独立DAC横向对比

ES9018K2M:vivo X3、vivo Xplay3S、vivo X5Max、小米Note标配版、魅族MX4 Pro和魅族PRO 5、蓝魔MOS1 max、TCL东东枪2和Gigaset ME和Gigaset ME pro

SABRE9018C2M:LG V10、联想乐檬X3、小米Note顶配版

ES9018AQ2M:Geek Out V2便携式解码耳放一体机,可以搭配智能手机使用,一般最好找USB输出功率比较大的手机,功率太低会带不动这种便携一体机。由于功耗和发热都比较大,所以不建议长时间搭配手机使用,而且音质也没有接在电脑上面那么好。

ES9028Q2M:vivo X6Plus、vivo Xplay5旗舰版

ES9028C2M:LG G5 B&O Hi-Fi模块

AK4490:中兴天机7

AK4375:nubia Z9 Max、nubia Z9 Max精英版和nubia My 布拉格,vivo X5ProV、vivo Y27、vivo X6和vivo X6S,Gigaset ME pure

CS4398:vivo X1、vivo Xplay、vivo Xshot、vivo X5、vivo X5F、vivo X5Pro、vivo Xplay5、vivo X6S Plus

不少读者可能会疑问,同样是ES90xx芯片,C2M、Q2M之类的后缀是啥意思呢?其实代表着该芯片的封装方式不同。C2M是三种封装规格中面积最小的,K2M封装面积在C2M和Q2M之间,Q2M是三种封装规格中面积最大的。综合对比上面ESS各款DAC芯片参数来看,LG G5 B&O Hi-Fi模块使用的ES9028C2M相对是最好的。不过类似Geek Out V2这种独立解码耳放一体机,LG那款Hi-Fi模块也存在发热大和功耗高的问题。

整合了运放芯片的DAC芯片:

整合了运放芯片DAC横向对比

AK4376:代表机型为nubia Z11和vivo X7

ES9118:无具体机型

SABRE9018Q2C:无具体机型

codec系列:

主流codec横向对比

338S1285:iPhone 6s

338S1201:iPhone 6 Plus

338S1117:iPhone 5

Lucky CS47L91:三星S7(Exynos 8890版)

CS43L36:魅族PRO 6

WM5102:三星S4、魅族MX3、联想K860i

WCD9335:三星S7(骁龙820版)

AK4961:nubia Z7和nubia Z9

总结:使用这些芯片的手机有很多,但是他们从供电规模、运放数量上都和随身听差很远,所以声音没法比。举个最简单例子,手机上面那颗ES9018K2M其实是ES9018的缩水版,专门针对移动设备进行定制的,前者是双声道,后者则是8声道。无论是动态范围还是信噪比等参数,ES9018都要远胜ES9018K2M。例如HIFIMAN 901采用了两块ES9018 DAC,同时,HIFIMAN 901采用专业运放芯片型号也比Hi-Fi手机更高级,数量也更多,分别是两颗OPA2107和两颗OPA627。

如上图所示,从ES9018K2M到ES9028Q2M/C2M,相比ES9018S在关键指标上逐步缩短距离,另一方面,ES9038PRO这块新品芯片在关键指标上继续作出突破,DNR和THD+N提升到新的高度。

另一方面,回到Hi-Fi手机三种主流芯片方案上,独立DAC和整合了运放芯片的DAC在音质表现上相比codec方案一般会好一点,其中更节省机身内部空间的整合了运放芯片的DAC将会成为未来的主流解决方案,用于Hi-Fi手机之中。

最后就是在短时间内,表现较好、综合水平更高的Hi-Fi芯片在续航和发热上表现一般更糟,这也是无法回避的技术瓶颈,正如录制和解码4K视频时候,手机的功耗和发热也会上去一样。更好的音质和更出众的画质表现肯定是需要付出一定代价的。


关键字:DAC  ADC  DSP  codec  运放  耳放 引用地址:六个术语(DAC、ADC、DSP、codec、运放、耳放)解析

上一篇:音响和音箱有什么区别_音响和音箱的区别介绍
下一篇:耳机放大器中的噪音抑制详解

推荐阅读最新更新时间:2024-11-12 16:09

STM32多通道ADC规则转换实现了
vu16 ADC_RCVTab ; //自己添加 /******************************************************************************* * Function Name : main * Description : Main program * Input : None * Output : None * Return : None *******************************************************************************/ int main(void) { #
[单片机]
多个AD9779 TxDAC器件的同步
       简介   AD9779 TxDAC的DAC输出采样速率最高可达1 GSPS.在某些应用中,例如需要波束导引的应用,用户可以同步多个AD9779.因此,当AD9779以接近最高速度工作时,TxDAC时序特性变得至关重要。   本应用笔记不讨论AD9779运作涉及到的全部细节。若要全面了解其内部数字引擎,用户应参阅AD9779数据手册。本应用笔记扩展了SYNC_I的使用,使多个AD9779器件实现相同的REFCLK/DATACLK同步。   在传统的插值TxDAC中,当DAC采用DAC输出采样速率时钟驱动时,会产生两个问题。第一,可能难以确定输入数据在哪一个DACCLK沿锁存。多数DAC解决这一问题的方法是提供一个
[电源管理]
多个AD9779 TxDAC器件的同步
Linear 推出具微微安培输入的缓冲型 18 位 8 通道 ADC LTC2358-18
亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司推出 18 位 8 通道同时采样逐次逼近型寄存器 (SAR) ADC LTC2358-18,该器件具集成的微微安培输入缓冲器。下面就随电源管理小编一起来了解一下相关内容吧。 在电路板空间稀缺的现状下,LTC2358-18 通过去掉通常在驱动非缓冲型开关电容器 ADC 输入时所需的前端信号调理电路,显着地节省了空间和成本。每个通道合起来节省了 3 个放大器、6 个电阻器和两个电容器组件,8 个通道总共可节省 88 个组件,从而节省了 BOM 成本和大量电路板空间,并使功耗降低超过 40%。微微安培输入以及在 30VP-P 共模范围内 128d
[电源管理]
一种DSP的远程多加载方案设计
引言 芯片的烧写与自加载是一个DSP系统能够顺利运行的基本条件。在DSP加载技术方面已经有大量文献和工作成果,比较好地解决了DSP自加载方面的许多基本问题。而传统的烧写/加载方案在调试、更新程序时需要反复外接仿真器,配置跳线,并且只能加载运行指定地址空间上的工程。这些对处于安装调试阶段的系统影响不大,但在诸如航天设备、大型机械或其他恶劣环境中工作,难以直接进行仿真器连接的DSP系统中,无法采用普通的烧写/加载方案对其进行更新和调试。 通过分析DSP系统加载原理,提出了一种基于TI公司C6x芯片的远程多加载DSP系统设计。该系统由通信芯片、DSP、外部动态存储器、外部闪存(Flash)共同组成,具备远程烧写、程序选择加载功能
[模拟电子]
一种<font color='red'>DSP</font>的远程多加载方案设计
STM32F4三路ADC同时采集
注意三路ADC配置为DMA传输的时候,需要修改ADC1-ADC3的地址: #define ADC1_DR_Addr ((uint32_t)0x4001204C) #define ADC2_DR_Addr ((uint32_t)0x4001214C) #define ADC3_DR_Addr ((uint32_t)0x4001224C) 必须按照以上的地址定义,否则独处的数据全部为0。
[单片机]
STM32_DAC输出三角波形
今天的软件工程下载地址(360云盘): https://yunpan.cn/cPi8GB2DyeKzI 访问密码 1a45 STM32F10x的资料可以在我360云盘下载: https://yunpan.cn/crBUdUGdYKam2 访问密码 ca90 工程概要说明:该工程通过配置,输出固定三角波形,频率和幅度也是固定的,当然也是可以变化,如果有朋友需要可以微信公众号中留言。 关于“STM32F103 DAC输出三角波形” 我把重要的几点在下面分别讲述,若不明白,请关注微信公众号“EmbeddDeveloper”查阅或留言。 一、RCC时钟配置 该函数位于在bsp.c文件下面; 使能RCC时钟:RC
[单片机]
STM32_<font color='red'>DAC</font>输出三角波形
智能电话CODEC的音频整合技术前景简介
电话CODEC通常带有一个脉冲编码调制(Pulse Code Modulation,PCM)接口。严格来说,PCM概念包含了今天我们正在使用的大多数数字格式,其中包括I2S;PCM的初衷是将数字编码和诸如调频之类的模拟技术加以区别。然而,在数字电话中,PCM通常指一种特定的,与Hi-Fi立体声不兼容的单音数据格式。 计算机音频的出现也孕育了另一类接口的的出现。由于质量要求与现有消费音频市场类似,就出现了以不同的取样率(特别是8kHz、44.1kHz和48kHz)来播放录制好的音频文件的需求。虽然以软件方式进行取样率转换是可能的,但是代价也非常昂贵。因此,目前已普遍使用的AC 97标准将该项任务交给CODEC处理,通过专门的硬件可以
[嵌入式]
如何将ADC与带有LCD的stm32 Discovery板一起使用
步骤1:ADC 使用HAL Cube,ADC的实现非常简单(在第1部分中提到)。 我正在使用 12位ADC模块 ADC预分频器= 8 转换数= 1 ADC分辨率= 128 采样时间为112个周期。 我们还可以将ADC与DMA一起使用。用于它的IRQ处理程序是 HAL_DMA_IRQHandler(AdcHandle.DMA_Handle) ,其中AdcHandle是ADC_HandleTypeDef类型。 要显示ADC值,我们必须使用uint32t uhADCxConvertedValue的外部值。它将值从0转换为4096(2 ^ 12),因此如果要显示从0开始的电压-3V,我们必须做简单的计算 uhADCxConverted
[单片机]
如何将<font color='red'>ADC</font>与带有LCD的stm32 Discovery板一起使用
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved