模块化碳化硅(SiC)器件评估的深入分析

发布者:Wanderlust123最新更新时间:2024-09-23 来源: elecfans关键字:SiC 手机看文章 扫描二维码
随时随地手机看文章

碳化硅(SiC)的高性能能力正在改变功率电子领域的格局,带来了诸如卓越的效率、增加的功率密度和提升的热性能等好处。值得注意的是,汽车应用正从SiC技术中受益良多,主要用于主驱动、车载充电器和电池充电站。


我们从之前的文章中了解到,SiC的介电强度是硅的十倍,使其能够创建满足充电基础设施和智能电网需求的高压器件。此外,SiC的高开关频率使得可以减小磁铁和电感器等组件的物理尺寸。


然而,这只是冰山一角。SiC功率器件正在各种应用中留下自己的印记,从电源和用于电池充电和牵引驱动的电动汽车电源转换到工业电机驱动和可再生能源发电系统,如太阳能和风能逆变器。


充分利用SiC需要改变设计方法,通常会导致对印刷电路板(PCB)的重大更改,减少辅助组件如冷却器和晶体管,从而降低成本并节省空间。因此,能够适应这些变化并实现新设计的快速、精确测试以及对器件可靠性进行仔细评估的设计评估工具至关重要。


01

构建块的生态系统:模块化设计本质上,模块化设计是一个工具包,提供了一套构建块的生态系统,以简化SiC器件评估过程。它促进了在表面贴装和穿孔封装的各种SiC产品上进行快速、全面的系统级测试。


该工具包的核心目标是简化和加快工程师、设计师和制造商的设计过程。它允许在实际硬件设计开始之前同时测试和优化MOSFET和预期的门极驱动器。该工具包使工程师能够一次性建立和评估控制器、门极驱动器、磁性元件和功率转换器中的SiC器件,而不是独立设计每个系统。


评估平台由主电路板、功率模块、门极驱动器模块和可选的控制模块组成,还可以添加其他潜在的附件。设计师可以使用“插入式”方法测试各种离散器件,最高可达1,200V,与各种制造商提供的门极驱动器选项相结合。


为了有效,这种平台应该能够适应广泛的电压、封装样式和功率拓扑,使其适用于大多数应用。这使得可以通过基于计算机的图形用户界面设置各种测试模式的参数,如双脉冲或升压-降压功率测试,从而消除了对外部功能发生器或PWM生成器的需求。


有了这个,固件工程师可以开始在真正的高压/高功率设计上开发和测试产品所需的定制固件,而不仅仅是低压控制器开发板。让我们更仔细地看看各个组件。

02

我们示例中的主板(图 2)具有低电感布局,并具有螺钉端子电源连接,适合 SiC 器件的高效测试。电源子卡专为每种器件封装而定制,采用同轴连接器进行 VGS 和 VDS 测量,从而确保最佳的信号完整性。

wKgaomY4hy6AZKg0AACfwadIBiI560.png

图2:半桥主板布局


它们还使用高带宽电流感应来进行精确的开关损耗测量。电源子卡的模块化设计使该平台能够评估一系列 SiC 器件,从表面贴装 TOLL 器件到 TO-247 封装。可以预期,模块化设计计划将超越最初推出的半桥主板,并正在开发用于逆变器和电机控制的三相变体等版本。


中央板基本上采用半桥配置。它具有用于栅极驱动器卡、电源子卡和可选控制卡的插槽。此外,它还集成了冷却风扇、薄膜和陶瓷直流总线电容器,以及外部电源和信号连接。电流和电压检测也是其设计的一部分。

03

定制子卡栅极驱动器板由行业领先的栅极驱动器公司与 Wolfspeed 联合开发,可以促进全系列 SiC MOSFET 的全面测试。栅极驱动器卡在 SiC 器件的分析和优化中发挥着关键作用。由于高 dV/dt 和 di/dt,使用 SiC MOSFET 进行设计通常会带来与布局中的寄生电感和电容相关的独特挑战。此外,栅极驱动器会影响 SiC MOSFET 的开关性能。

wKgZomY4h0CAQ1L8AACqSOr2HUU415.png

栅极驱动器卡


分析整个门电路是降低设计过程风险的关键。每个栅极驱动器卡都带有两个隔离式栅极驱动器输出和相应的隔离式偏置电源,以驱动半桥功率子卡。在需要短路保护的应用中,平台中提供的多种栅极驱动器卡都包含此功能。这样可以在开始最终设计之前优化响应时间并验证评估板上的性能。


评估平台中的栅极驱动器卡(图 3)有助于分析 SiC 器件的性能。它们为工程师提供了一种测量 QRR 和开关损耗(E ON、E OFF、E RR)等重要因素的方法,有助于了解设备的运行效率。还可以确定 T DELAY-ON、 T DELAY-OFF、 T RISE和 T FALL等时序指标,从而概述不同条件下的器件性能。可以根据应用的工作条件调整栅极电阻,以提供开关损耗和 dV/dt 或 VDS 电压过冲的理想平衡。


04

评估平台中的电源子卡(图4)设置为半桥。每张卡均包含高侧和低侧 SiC MOSFET,以及使用分流器或 CT 的高带宽电流感测。它们可以配置为在具有高保真电流测量的双脉冲测试中运行,或者在具有强制风冷的连续功率降压或升压转换器中运行。工程师可以自由地使用他们喜欢的栅极驱动器和功能集来测试卡上的器件、进行测量并改进 SiC MOSFET 和栅极驱动器对的性能。

wKgaomY4h4KAdNBYAACIwNqrmVE529.png

图4电源子卡布局和功能


此外,可以通过切换电源子卡来替代 SiC 器件,避免焊接,并保持与直流总线的低电感连接,以获得最佳切换性能。电源子卡可用于 TOLL、TO-263 和 TO-247 MOSFET,单一平台内的DS(ON)设备。SiC 作为 1,200 V 应用的成熟解决方案(横向 GaN 技术在该领域面临挑战),这些测试规定特别有益。


在此处用作示例的评估套件中,可以调整栅极电阻 (RG) 以优化开关行为并评估各种封装类型的高达 1,200 V 的分立 SiC MOSFET。这些评估可以在首选拓扑中完成,例如使用半桥主板的降压或升压转换器。

wKgZomY4h1OAVt7vAABhhYIuAYU683.png

图5:降压-升压板

该平台还可以在实际操作条件下进行高功率热测试。硬件测试附带全面的模块化 SPICE 模型,使工程师能够将测试结果与仿真进行比较,从而帮助开发设计。


此外,SPICE 系统模型还提供了关键寄生元件的估计。这不仅提高了仿真的准确性,还指导工程师控制这些元件,这是使用 SiC MOSFET 时的一个关键方面。最后,还提供可选的降压-升压板,允许在不同功率级别进行特定于应用的测试。定制设计的空芯电感器(图 5b)提供了最大限度减少寄生电容的选项,确保精确的双脉冲测试 (DPT),这对于优化降压或升压转换器设计至关重要。


借助降压-升压滤波器板 (5a),降压或升压转换器应用可以在此套件上全功率运行。这样可以测量热数据以及转换器效率(图 6)。


05

随着从电动汽车到太阳能和数据中心等许多行业对最高功率密度下的节能转换的需求不断增加,SiC 器件评估在电力电子领域的重要性将继续增长。在这种情况下,功率器件测试不仅仅局限于数据表参数。通过使用 SpeedVal 套件平台进行模块化 SiC 器件评估,工程师可以通过执行关键测试来加快设计周期,而无需为每次测试构建全新的设计而耗时且成本高昂。此外,SpeedVal 套件的所有设计文件均可用,允许工程师在自己的设计中重复使用该平台的各个部分,从而降低设计风险。


通过提供全面的解决方案,模块化设计评估通过包含所有必要的组件(包括栅极驱动器和控制板)来实现全面的功率验证。它允许在硬件启动之前在不同的电压范围内进行测试,并通过其低电感功率环路和电流感应设计简化精确开关测量的过程。重要的是,SiC 测试套件(例如 SpeedVal 套件)的模块化特性允许选择不同的板,以根据特定应用要求定制测试条件。


随着行业努力提高效率、缩小尺寸、减轻重量和冷却器设计,SiC 组件的应用将持续增长。为此,SiC 器件评估的模块化方法是实现优化设计的有效策略,在电力电子的未来中发挥着广阔的前景。


关键字:SiC 引用地址:模块化碳化硅(SiC)器件评估的深入分析

上一篇:智能驾驶大模型:有望显著提升自动驾驶系统的性能和鲁棒性
下一篇:基于G32A1445的汽车音乐律动氛围灯解决方案

推荐阅读最新更新时间:2024-11-17 15:38

Vicor如何用标准硅FET甩了GaN和SiC几条街的?
目前,越来越多的应用系统对电源系统的功率密度及转换效率提出了更高的要求,在电源系统设计中,不仅功率密度是众多要素之一,其他比如电源系统架构、多种开关拓扑、电源模块和基于分立器件设计的封装技术,每一项都发挥重要的作用。此外,效率也是其中的一个要素,如配电网络 (PDN) 设计、达到负载点电压转换步骤的数量,以及转换器拓扑与磁性材料设计。对于众多工程师而言,提高功率密度与效率需要在电源系统设计中进行权衡。 破解损耗的难题 Vicor全球市场营销副总裁Phil Davies表示,近年来电源系统的一个巨大变化是:由于性能及功能要求的提高,负载功率需求也在不断攀升。工程师现在更频繁地发现,与其配电网络设计相关的损耗日趋
[电源管理]
Vicor如何用标准硅FET甩了GaN和<font color='red'>SiC</font>几条街的?
智能功率模块加速迈向基于碳化硅SiC)的电动汽车
当前,新型快速开关的碳化硅(SiC)功率晶体管主要以分立器件或裸芯片的形式被广泛供应,SiC 器件的一系列特性,如高阻断电压、低导通电阻、高开关速度和耐高温性能,使系统工程师能够在电机驱动控制器和电池充电器的尺寸、重量控制和效率提升等方面取得显著进展,同时推动 SiC 器件的价格持续下降。然而,在大功率应用中采用 SiC 还存在一些重要的制约因素,包括经过良好优化的功率模块的可获得性,还有设计高可靠门级驱动的学习曲线。智能功率模块(IPM)通过提供高度集成、即插即用的解决方案,可以加速产品上市并节省工程资源,从而能够有效地应对上述两项挑战。 本文讨论了在电动汽车应用的功率转换器设计中选择 CISSOID 三相全桥 1200V S
[嵌入式]
智能功率模块加速迈向基于<font color='red'>碳化硅</font>(<font color='red'>SiC</font>)的电动汽车
罗姆与联合汽车电子签署SiC功率元器件长期供货协议
全球知名半导体厂商罗姆(ROHM Co., Ltd.,以下简称“罗姆”)于近日与中国汽车行业一级综合性供应商——联合汽车电子有限公司(United Automotive Electronic Systems Co., Ltd. ,以下简称“UAES”)签署了SiC功率元器件的长期供货协议。 UAES副总经理 郭晓潞(图右)、 ROHM Co., Ltd. 执行官 功率元器件事业本部 本部长 野间 亚树(图左) UAES和罗姆自2015年开展技术交流以来,双方在搭载SiC功率元器件的车载应用产品开发方面建立了合作伙伴关系。 2020年,双方在位于中国上海的UAES总部成立了“SiC技术联合实验室”,加强了SiC电源解
[半导体设计/制造]
罗姆与联合汽车电子签署<font color='red'>SiC</font>功率元<font color='red'>器件</font>长期供货协议
安森美拟投资140亿元提高SiC芯片产量
路透社16日报道,安森美半导体高管周二表示,该公司正考虑投资20亿美元提高碳化硅芯片产量。该公司高管在报告中说,公司正考虑在美国、捷克或韩国进行扩张。 安森美半导体首席执行长Hassane El-Khoury表示,公司碳化硅芯片生产目前集中在韩国富川的一家工厂。该公司计划寻找“端到端”生产,这意味着无论选择哪一个地点,都将把原始碳化硅粉末转化为芯片。 El-Khoury表示,在多个地方复制整个生产过程已成为汽车制造商一个重要卖点,他们从2021年开始持谨慎态度,当时盛产芯片的美国德克萨斯州的冻结和亚洲芯片供应商的短缺导致汽车生产停产线。 安森美半导体是汽车行业的长期供应商,不仅为电动汽车的传动系统提供芯片,也供应其他芯
[汽车电子]
功率器件巨头怎么去“玩转”SiC市场
按照业界通常的看法,未来5到10年内,SiC功率器件市场增长机会主要在汽车领域,特别是EV、混合动力车、燃料电池车等电动车应用市场。 实际上,在光伏和储能、驱动、充电桩、UPS领域,SiC都将有高速成长的机会。而且,电源领域将是SiC最大的市场。综合起来,这几个市场将会有16%的年复合增长率。 脱颖而出 更高的工作电压、更高的效率、更好的散热性能,都是SiC在电力电子领域的优势。 与传统的Si材料作对比,SiC的带隙(Band Gap)是其三倍;击穿场强(MV/cm)上,SiC是2.2,Si为0.3,高出7倍左右;SiC的热导率是4.9,Si是1.5,高出3倍多;电子漂移速度上,SiC也是Si的2倍。 “如果用在电源上,Si
[手机便携]
英飞凌推出CoolSiCTM 1200V SiC JFET系列器件
2012年6月19日,德国纽伦堡讯 — 在“2012年欧洲电力电子、智能运动、电能品质国际研讨会与展览会”上,英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)推出新的CoolSiCTM 1200V SiC JFET 系列,该产品系列增强了英飞凌在SiC(碳化硅)产品市场的领先地位。这个革命性的新产品系列,立足于英飞凌在SiC技术开发以及高质量、大批量生产方面十多年的丰富经验。 英飞凌科技股份公司高压功率转换产品部负责人Jan-Willem Reynaerts指出:“英飞凌已针对需要高效电源管理的市场推出了多项突破性技术。CoolSiCTM 也是一种革命性的创新技术,可将太阳能逆变器的性能提升至新的水平。凭借新
[电源管理]
技术文章—优化宽禁带材料器件的半桥和门驱动器设计
现代宽禁带功率器件(SiC, GaN)上的开关晶体管速度越来越快,使得测量和表征成为相当大的挑战,在某些情况下几乎不可能实现。隔离探测技术的出现改变了这种局面,通过这一技术,设计人员终于能够放心地测量以前回避的半桥和门驱动器波形。通过详细了解相关挑战,并使用适当的探测技术,电源工程师可以更加迅速、高效地表征和优化其设计。 半桥电路(图1)广泛用于功率电子领域的多种应用,是现代设计中有效转换电能使用的基本电路。但是,只有在半桥、门驱动器和布线正确且优化设计时,这种电路的优势才能得到实现。在测量结果与预期结果不一致时,可能很难提取与被测器件有关的有意义的细节。更糟糕的是,基于探头位置和其他因素,波形可能会明显变化,最终会让设计人员
[半导体设计/制造]
技术文章—优化宽禁带材料<font color='red'>器件</font>的半桥和门驱动器设计
SiC热特性优异 电源转换效能更上层楼
市场对切换速度、功率、机械应力和热应力耐受度之要求日益提升,而硅元件理论上正在接近性能上限。宽能带隙半导体元件因电、热、机械等各项性能表现具佳而被业界看好,被认为是硅半导体元件的替代技术。 在这些新材料中,相容硅技术制程的碳化硅(SiC)是最有前景的技术。碳化硅材料的电气特性使其适用于研制高击穿电压元件,但是,远高于普通硅元件的制造成本限制了其在中低压元件中的推广应用。在600V电压范围内,硅元件的性能非常好,CP值优于碳化硅元件。不过,应用要求晶片有更高的性能,而硅元件已经达到了极限。 本文评测了主切换采用意法半导体新产品650V SiC MOSFET的直流-直流升压转换器的电热特性,并将SiC碳化硅元件与新一代硅元件做了全面的
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved