解决EMI中传导干扰的8个技巧

发布者:DelightfulWish最新更新时间:2024-10-16 来源: elecfans关键字:EMI  传导干扰  滤波器  电磁干扰 手机看文章 扫描二维码
随时随地手机看文章

EMI电磁干扰,可分为传导干扰和辐射干扰。对于传导干扰,一般增加电源输入电路中的EMC滤波器节数,适当调节下每节滤波器的参数,基本上都能解决。另外再给大家分享8个解决传导干扰的小技巧。


一、尽量减少每个回路的有效面积

wKgZomaLkG2AV-r9AAF_QevP12g139.png

当电路存在数个回路电流,可将每个回路视为一个感应线圈,或变压器线圈的初、次级。当某个回路中有电流流过时,另外一个回路中就会产生感应电动势,从而产生干扰。最有效减少干扰的方法就是尽量减少每个回路的有效面积。


二、屏蔽、减小各电流回路面积及带电导体的面积和长度

wKgZomaLkHeADQZ2AAF4tx8qk6k769.png

图中e1、e2、e3、e4为磁场对回路感应产生的差模干扰信号;e5、e6、e7、e8为磁场对地回路感应产生的共模干扰信号。共模信号的一端是整个线路板,另一端是大地。


三、对变压线进行磁屏蔽、尽量减少每个电流回路的有效面积

wKgZomaLkICAMp-aAAFiInHViks081.png

线路板中的公共端不能算为接地,不要把公共端与外壳相接。除非机壳接大地,否则公共端与外壳相接,会增大辐射天线的有效面积,共模辐射干扰更严重。

降低辐射干扰的方法,一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。


对变压器进行磁屏蔽、尽量减少每个电流回路的有效面积,图中的电磁感应干扰,最为严重的是变压器漏感所产生。若将变压器的漏感视为变压器感应线圈的初级,则其它回路可视为是变压器的次级,所以在变压器周围的回路中,都会被感应产生干扰信号。减少干扰的方法,一是对变压器进行磁屏蔽,二是尽量减少每个电流回路的有效面积。


四、用铜箔对变压器进行屏蔽

wKgZomaLkImAMk30AAF7NFE6kTc700.png

对变压器屏蔽,主要是减小变压器漏感磁通对周围电路产生电磁感应干扰,以及对外产生电磁辐射干扰。虽然非导磁材料对漏磁通起不到直接屏蔽作用的,但铜箔是良导体,交变漏磁通穿过铜箔的时候会产生涡流,而涡流产生的磁场方向正好与漏磁通的方向相反,部分漏磁通可以被抵消,所以铜箔对磁通也可以起到很好的屏蔽作用。


五、采用双线传输和阻抗匹配

wKgaomaLkKCAM16_AAEvX3dySYY506.png

图中两根相邻的导线,如果电流大小相等,电流方向相反,则它们产生的磁力线可以互相抵消。对于干扰比较严重或比较容易被干扰的电路,尽量采用双线传输信号,不要利用公共地来传输信号,公共地电流越小干扰越小。


当导线的长度等于或大于四分之一波长时,传输信号的线路一定要考虑阻抗匹配,不匹配的 传输线会产生驻波,并对周围电路产生很强的辐射干扰。


六、减小电流回路的面积

wKgZomaLkLKAA1OIAAFBu-8cCBY028.png

图中磁场辐射干扰主要是流过高频电流回路产生的磁通窜到接收回路中所产生。因此要尽量减小流过高频电流回路的面积和接收回路的面积。

e1、 Φ1、S1、B1分别为辐射电流回路中产生的电动势、磁通、面积、磁通密度;e2、 Φ2、S2、B2分别为辐射电流回路中产生的电动势、磁通、面积、磁通密度。

wKgaomaLkL6ANBcsAAFAwJScT3Q023.png


七、不要采用多个回路串联供电

几个电流回路互相串联在一起进行供电,容易产生电流共模干扰,特别是在高频放大电路中,会产生高频噪音。电流共模干扰的原因是:∆I2=∆I3+∆I4+∆I5

wKgZomaLkM6AeUtjAADvaFxZfEM018.png

当几个电流回路互相分开,采用并联供电,每个电流回路具有独立性,不会产生电流共模干扰。


八、避免干扰信号在电路中产生谐振

wKgZomaLkNiAcpWvAACchpIeYp0282.png

共模天线的一极是整个线路板,另一极是连接电缆中的地线。要减小辐射干扰最有效的方法是对整个线路板进行屏蔽,并且外壳接地。电场辐射干扰的原因是高频信号对导体或引线进行充电,应尽量减小导体的长度和表面积。


磁场干扰的原因是在导体或回路中有高频电流流过,应该尽量减小线路板中电流回路的长度和面积。频率越高,电磁辐射干扰就越严重;当载流体的长度可以与信号的波长比拟时,干扰信号辐射将增强。


关键字:EMI  传导干扰  滤波器  电磁干扰 引用地址:解决EMI中传导干扰的8个技巧

上一篇:国产PLC能否使用无线通讯终端来实现无线通讯?让我们一探究竟
下一篇:巴图自动化Modbus协议转Profinet协议网关模块连智能仪表与PLC通讯

推荐阅读最新更新时间:2024-11-17 07:51

单片机A/D采样的过程_梳状滤波器的认识
  MSP430单片机中有很多A/D采样模块使用的是具有∑-△结构的SD16或者SD16_A模块,该模块中具有过采样率(OSR,Oversampling ratio)的设置寄存器。这个寄存器不同的设置值在A/D采样的过程中到底会产生怎样的影响呢?   在TI的手册中我们可以知道,OSR是SINC3梳状滤波器的一个参数,首先,来学习一下梳状滤波器。   1、 梳状滤波器的定义:是由许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过。梳状滤波器其特性曲线像梳子一样,故称为梳状滤波器。   2、 梳状滤波器是一种最简单的FIR滤波器,其单位脉冲响应h(n)全为1,h(n)=1 ,0≤n≤N-1;0 其它传输函
[单片机]
单片机A/D采样的过程_梳状<font color='red'>滤波器</font>的认识
基于补偿原理的正激式变换器传导共模EMI抑制
1 引言       随着电力电子器件的广泛应用,功率变换器的开关频率越来越高,结构越来越紧凑,使得电磁干扰(Electromagnetic Interference,EMI)问题越来越严重。EMI信号不但具有很宽的频率范围,还具有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。所以,如何降低甚至消除开关电源中的EMI问题已经成为开关电源设计中重要的问题。抑制共模干扰的通常方法是在输入线上串接较大的磁扼流线圈,但是这样就破坏了变换器的整体外形结构。本文首先分析了开关电源共模EMI产生机理和传统共模EMI抑制技术,在此基础上,针对正激式变换器,介绍了基于补偿原理的共模EMI抑制方法。即采取了一种用一个补偿变压
[电源管理]
基于补偿原理的正激式变换器<font color='red'>传导</font>共模<font color='red'>EMI</font>抑制
关于DC-DC转换器的选型及设计详细指南
DC/DC转换器的规格说明 板载DC-DC转换器的规格是重要且详细的过程。选型正确后,它会产生符合所有应用的经济高效的解决方案。错误选择转换器会导致成本过高,或者不适合该应用。本常见问题解答将介绍板载DC/DC转换器的主要规格,以及包括热管理和电磁兼容性考虑因素。 这款效率为96%的40A负载点(PoL)非隔离式板装DC/DC转换器尺寸为33mm x 13.5mm x 10.2mm。(图片:TDK) 效率通常是DC/DC转换器最重要的规格,它对系统设计的许多方面都具有重大影响。即使在高效率的设计中,效率的提高也会产生重大影响。效率为95%的设计热损耗为5%,效率为80%的DC/DC转换器热损耗为20%,相差四倍。这
[电源管理]
关于DC-DC转换器的选型及设计详细指南
基于FPGA的数字滤波器的设计与实现
在信息信号处理过程中,如对信号的过滤、检测、预测等,都要使用到滤波器,数字滤波器是数字信号处理中使用最广泛的一种方法,常用的数字滤波器有无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器两种 。对于应用设计者,由于开发速度和效率的要求很高,短期内不可能全面了解数字滤波器相关的优化技术,需要花费很大的精力才能使设计出的滤波器在速度、资源利用、性能上趋于较优。而采用调试好的IP核需要向Altera公司购买。本文采用了一种基于DSP Builder的FPGA设计方法,以一个低通的16阶FIR滤波器的实现为例,通过生成的滤波器顶层模块文件与A/D模块文件设计,在联星科技的NC-EDA-2000C实验箱上验证了利用该方法
[嵌入式]
高Q值陷波滤波器
高Q值陷波滤波器
[模拟电子]
高Q值陷波<font color='red'>滤波器</font>
汽车液晶仪表时钟扩频技术提供的一种性价比方案
汽车液晶仪表时钟 EMI 解决方案 早在2014年,中国汽车全液晶仪表市场规模就已经达到35.06亿元,预计到2020年,这一规模将突破200亿元,达到234.43亿元。全数字汽车仪表是一种网络化、智能化的仪表,其功能更强大,显示内容更丰富,线束链接更加简单、更全面,更人性化地满足驾驶需求。最初全液晶仪表更多地是出现在一些豪华品牌上,后来随着技术逐步成熟,制造成本不断下降,全液晶仪表逐步普及到自主品牌的车型里。最近新能源汽车的兴起更加带动了全液晶仪表的应用。 从液晶仪表盘PCB图不难看出与传统仪表相比,全液晶仪表多了与显示相关的部件,比如:显示屏、GPU 处理器、屏正负压、屏背光等。改用液晶屏幕后不仅增加了产
[汽车电子]
汽车液晶仪表时钟扩频技术提供的一种性价比方案
从三个角度看ZigBee EMI/EMC预一致性测试
如果您和大多数设计人员一样,那么您可能想从本已非常紧张的设计周期中再省出一些时间。还好,有一个好方法:增加EMI/EMC预一致性测试。 这听起来可能不太直观,但在把被测器件发往测试机构前,先做一些快速辐射测试,可以为您节约大量的时间和资金。一个简单的事实是,和大多数团队一样,您很可能第一次在测试机构测试时并不能通过正式的一致性测试。 在实验室中使用经济的设备执行基本预一致性测试,可以帮助您提前发现问题,节省在测试机构多次执行一致性测试的时间和费用。毋庸置疑,在设计周期中发现问题的时间越早,解决起来越容易。 如果您像大多数工程师一样,您可能也觉得这主意确实不错,但需要的设备太贵了,而且很难使用。时代变了,现在形势也变了。通过结合使用
[测试测量]
平面磁集成EMI滤波器的等效并联电容分析
0 引言   电磁干扰问题通常由于电路中表现不明显的耦合路径弄得很复杂,其明确而有效地解决方法一般都依赖于工程师的经验或建立在经典模型上的数模仿真。令工程师们高兴的是,如果所有的非接触电磁干扰都能够用传统的集总元件建模,而这种模型可以与转换电路图表相结合来描绘全部传导干扰和耦合干扰。这样分析和预测就变得比较容易了。   集总元件电路模型适合分析和预测频段在0~30 MHz的电磁干扰。在许多先前的研究和引出用于分析的所谓简单模型过程中,了解重要的路径通常至关重要。但是,在可能存在微小的耦合路径的情况下,这些参数都很难获得。为此,本文利用一种可用于分析所有容易产生非接触电磁干扰的普通集总电路模型,来准确地分析平面型PCB E
[模拟电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved