如何优化大功率直流充电桩设计?

发布者:Wanderlust123最新更新时间:2024-10-17 来源: elecfans关键字:大功率  直流充电桩 手机看文章 扫描二维码
随时随地手机看文章

充电时间是消费者和企业评估购买电动汽车 (EV)的一个主要考虑因素。为了缩短充电时间,业界正转向采用直流充电桩 (DCFC) 。DCFC 绕过电动汽车的车载充电器,直接向电池提供更高的功率,从而大大缩短充电时间。


为了实现更快的充电速度、适配更高的电动汽车电池电压并提高整体能效,DCFC 必须在更高的电压和功率水平下运行。这给 OEM 带来了挑战,必须设计出一种能够优化效率,同时不影响可靠性和安全性的架构。


DCFC 集成了多种器件,包括用于辅助电源、感测、电源管理、连接和通信的器件。另外,为了满足各种电动汽车不断发展的充电需求,必须采用灵活的制造方法,这也使设计变得更加复杂。

wKgaomYCoZSAPdUlAAApkDY_f1U47.webp

图 1. DCFC 中的主要模块概览

快速和超快速充电

图 2 显示了交流充电和直流充电之间的差异。对于交流充电(图 2 左侧),车载充电器 (OBC) 插入标准交流插座。OBC 将交流电转换为适当的直流电为电池充电。对于直流充电(图 2 右侧),充电桩直接给电池充电。

wKgZomYCoZWADlBWAAA5xojYl7M12.webp

图 2.交流充电和直流充电概念图。
资料来源:Yolé Development

目前电动汽车的 OBC 依赖交流充电,最大额定功率为 22 kW。直流充电绕过了 OBC,直接向电池输送直流电,因此能提供高得多的功率,从 50 kW 到 400 kW 以上甚至更高。

由于这个原因,DCFC 常被称为“快速”或“超快速”充电桩。如此高的充电速度和更大的便利性为电动汽车带来了更多的应用和用例。例如,电动汽车如果需要八小时才能充满电,是不适合长途驾驶的,但借助超快速充电桩,电动汽车可以在短暂的休息时间内大量充电,增加车辆的续航里程,使其更加适合日常使用。因此,从现在到 2030 年,快速直流充电桩的复合年增长率预计将超过 30%(来源:Yolé Development)。

碳化硅 (SiC) 和功率集成模块 (PIM) 技术的进步,是促进向更快速充电转变的关键驱动力。SiC 使 DCFC 能够以更高的频率运行(因而效率也更高),同时以更快的速度提供更多功率。PIM 使 OEM 能够快速将先进的技术集成到紧凑、轻便的设备中,并实现出色的热管理、可靠性和可制造性,从而加快 SiC 技术的普及。


DCFC 剖析

如图 3 所示,直流充电桩主要包括两级:AC-DC 级和后续 DC-DC 级。AC-DC 级将来自电网的交流电转换为直流电,而第二级确保以适合电池所需的电压和电流水平提供功率。

wKgaomYCoZWAAe_6AABCPnwxrWo82.webp

图 3. DCFC 的架构


对于商业应用,3 级充电桩需要使用三相电源(图 4),可以在短短 30 分钟内增加 100 多英里的续航里程。在将电动汽车技术引入运输和物流等应用方面,这些超快速充电桩将发挥重要作用。

wKgZomYCoZaAGIePAABfsjwSLeo36.webp

图 4. 单相电网的功率流(左),三相电网的功率流(右)

wKgaomYCoZaAZo6LAABsLrL0aYo79.webp

图 5. 快速直流充电桩的架构

3 级 DCFC 的前端由三相功率因数校正 (PFC) 升压级组成,可以是单向或双向;升压级可以采用各种拓扑(二电平或三电平)实现。PFC 级接受电网电压(400 EU、480 US),并将其升压至 700 至 1000 V。对于下一代充电桩,业界已经瞄准了更高电压。

在升压级之后,DC−DC 隔离级将总线电压转换为所需的输出电压。此电压需要与电动汽车电池的充电曲线保持一致。因此,DC-DC 输出可能需要在 150 V 至 1500 V 之间摆动,具体电压取决于电池和所处的充电阶段。转换器通常针对特定电压水平(常见为 400 V 或 800 V)进行优化。为了实现更高的功率水平,DCFC 会将多个功率模块(图 6)堆叠起来并联运行。

为了在此类高电压下实现更高的效率,业界正从分立式、IGBT 和混合方案转向 SiC 功率集成模块 (PIM)。(图 7)除 PIM 之外,DCFC 还需要多种功率器件,包括栅极驱动器 IC、数字隔离器、电源 IC(LDO、SMPS 等)和电流检测。

wKgZomYCoZeAM6B8AAASAjkIcHg42.webp

图 6. 300 kW DCFC 中的 12 x 25 kW 构建模块

wKgaomYCoZeAVWOqAAA3cA5CAsU62.webp

图 7. 机电设计比较

通信和连接也是 DCFC 设计的关键方面。堆叠的模块需要能够与充电桩控制器通信,车辆和充电桩必须就充电序列进行通信(CAN 或 PLC)。独立的快速直流充电桩还需要能够处理充电相关的支付。最后,充电桩需要管理自身的维护、软件升级等(例如通过蓝牙低功耗、Wi-Fi 4、LTE)。实际标准由所使用的直流充电协议规定,例如 IEC−61851 / SAE1772、GB/T、CHAdeMO、组合充电系统 (CCS) 或特斯拉超级充电桩(图 8)。

wKgZomYCoZiACW2JAAA_bCt9I6E97.webp

图 8. 交流和直流快速充电桩的架构

DCFC 关键设计考虑因素

设计 DCFC 时,有多个关键因素需要考虑,这些因素会影响架构设计和器件选择:


目标效率:

确定应优化效率的电压和功率范围。充电桩在充电期间在不同的电平运行,因此系统应针对对电力传输效率影响最大的电平进行优化。


分立式设计还是功率集成模块 (PIM):

分立式设计的灵活性更大,但开发过程也更复杂(图 7)。对于许多应用而言,模块在效率方面的诸多优势是分立式设计难以企及的。例如,模块将多个功率器件集成在单个紧凑的封装中,简化了机械组装,优化了热管理,提高了可靠性,并减少了电压尖峰和高频 EMI。


架构/拓扑结构:

所选择的拓扑结构(即二电平还是三电平)以及充电桩需要单向运行还是双向运行,都会影响器件的选择。实现直流充电桩 PFC 和 DC-DC 级的拓扑结构选项有许多。由于功率和电压水平非常高,许多 OEM 的首选架构一般是三级功率因数校正 (PFC)。PFC 设计最常用的拓扑结构有三开关 Vienna(单向)、NPC、A-NPC、T-NPC(双向替换二极管)和六开关(双向) 。DC−DC 级通常以全桥或相移 LLC 及其变体实现,并采用双有源桥 (DAB) 架构支持双向拓扑结构。这些拓扑结构包括二电平和三电平系统,它们分别采用 600 至 650 V 或 900 至 1200 V 开关和二极管。(进一步了解拓扑结构:快速直流电动汽车充电:系统中使用的常见拓扑和功率器件)


约束条件:

应注意物理系统约束,包括尺寸、重量、成本和其他需要考虑的限制因素。例如,如果尺寸和重量很重要,那么选择基于 SiC 的模块将能降低总体布线要求,减小系统尺寸,并减轻车重。


热管理:

管理散热对于维持效率、可靠性和系统使用寿命至关重要。使用 SiC 器件以更高频率运行,可以提高功率密度,提升效率,并减少需要管理的热量。此外,许多模块还针对使用极低热阻材料的热传递进行了优化。


仿真模型:

拥有器件和模块的精确模型可以大大简化和加速设计过程,尤其是在权衡多种设计方案时。


通信:

明确特定应用需要哪些标准和协议。确保所选的供应商和产品系列支持所有可能需要纳入的标准,以支持当今和未来的电动汽车。

保护:

根据法规要求,必须配备接地故障断路 (GFI) 功能。其他功能(如浪涌电流和过压保护)也至关重要。系统中如何集成这些功能(即单独的电路、功率级的一部分、集成在模块上等),将会影响对其他系统约束条件的优化。

先进的充电架构

理想情况下,电动汽车在非高峰时段充电。这会大大降低电力成本,并减少高峰时段电网的负荷,避免造成停电。

为了实现这一目标,直流充电桩需要与储能系统 (ESS) 和太阳能发电系统集成。ESS 在非高峰时段充电,储存电力以供白天使用。通过安装太阳能电池板以在白天发电,可以减少对 ESS 电力的消耗,从而减轻 ESS 的负荷。在这种配置中,DC/DC 转换器可以连接到高压总线来为电动汽车充电。

安森美(onsemi)致力于在供应链的所有层面实现可持续发展。对于希望采用此类先进架构的 OEM,安森美可以帮助他们以高效、安全、可靠、可持续的方式集成合适的技术。

快速和超快速直流充电是电动汽车的未来。快速直流充电桩能够将充电时间缩短至不到一小时,这将为电动汽车开辟一系列全新的应用领域和使用场景。

总结

通过了解影响器件选择的关键设计考虑因素,工程师可以优化大功率直流充电桩架构,实现更高的效率、可靠性和性能。随着碳化硅和功率集成模块等技术的进步,工程师可以更快速地评估和设计复杂系统,而无需作出妥协。由此,OEM 可以迅速且经济高效地满足市场的充电需求。而且,OEM 可以与合适的合作伙伴合作,通过集成储能系统等新技术来创建更具可持续性的基础设施,从而不断提升产品的质量和实用性。

虽然 IGBT 和混合实现方案仍在使用,但基于 SiC 的功率模块正迅速成为 DCFC 充电应用的首选方案。安森美提供专用于 DCFC 的现成 PIM 系列,其具有 EliteSiC 900 V 和 1200 V 击穿电压额定值。这些模块支持半桥和全桥拓扑结构,采用 F1 和 F2 封装,具有极低的 RDSons(3 至 40 mΩ,具体取决于配置)。此外,安森美正在开发多种使用 M3S 技术平台的新的 SiC PIM 产品,以进一步为设计人员的系统设计提供更大的灵活性。

安森美还提供丰富的参考设计和硬件,配备专门的专家应用团队,为全球电动汽车充电系统设计提供 SiC 驱动器优化和系统方案专业知识,让设计人员可以快速评估驱动器并加速应用开发。


关键字:大功率  直流充电桩 引用地址:如何优化大功率直流充电桩设计?

上一篇:25kW电动汽车直流快速充电桩:设计技巧、技术和经验总结
下一篇:超级跑车的车灯从最初的设计理念到最终的产品实现是怎样一个过程?

推荐阅读最新更新时间:2024-11-09 22:17

Bourns 推出新型高电流大功率瞬态电压抑制器(PTVS)
电子网消息,全球知名电子组件领导制造供货商Bourns,今日宣布推出新型高电流大功率瞬态电压抑制器(PTVS),能提供卓越的过电压保护。Bourns 最新型PTVS-M系列,乃是专门设计用于高功率直流应用的严苛浪涌需求,特别是暴露与恶劣环境的装置。 Bourns PTVS-M产品系列,使用先进的硅制程技术来强化卓越的浪涌性能特点,与金属氧化物变阻器技术(MOVs)相比,可在浪涌发生时若遇到较低的箝位电压、提供更好的稳定性及更高的可靠度。  Bourns PTVS-M型号采用SMD封装, PTVS二极管是印刷电刷电路板唯一的通孔部件,透过设计来消除此产品额外制造的步骤,进而简化组装及降低成本。再者, 创新设计的’包覆成
[半导体设计/制造]
使边界扫描与功能测试相结合实现最大功率的功能测试装置设计
生产后的中度复杂的印刷电路板(PCB)传统上使用在线测试(ICT)和功能测试来进行检测。其它的测试方法,例如昂贵的光学和X光检查,经常是必须的,以来验证BGA被正确地放置。然而,JTAG边界扫描可以取代ICT,以作为功能测试的自然配对物,并且使光学与X光检查不再必要。 ICT是一个隔离测试每个部件或者连接的方法。其使用例如用于简单模拟部件的保护技术等技术。通过针床或者飞针对被测设备表面节点的访问,被用来验证与这些节点相连的已安装的部件的正确性。 图1.使用保护技术测量电阻 尽管这类测试验证了每个单一部件的正确性,它却不能够验证一个板卡,当通电时,是否能作为一个整体正常运行。想要做到这点就必须进行功能测试。 尽管新测试方法在
[测试测量]
使边界扫描与功能测试相结合实现最<font color='red'>大功率</font>的功能测试装置设计
中车株洲周清和代表:加强对大功率半导体产品支持力度
本报记者 龙跃梅 “当前,我国大功率半导体市场主要被英飞凌、三菱、富士等西方国家公司割据,这严重制约了国产核心技术的发展,给国计民生带来了诸多潜在的威胁。”全国人大代表、中车株洲电力机车有限公司董事长周清和说。 大功率半导体主要包括IGBT(绝缘栅双极型晶体管)、双极器件、宽禁带器件等产品,应用于新能源汽车、轨道交通、智能电网、新能源发电、舰船驱动、重型工业设备等多个领域。 周清和说,当前,欧美日等西方国家大功率半导体产业成熟且领先,产品竞争力强,在其内部采购中无需设置国产化率指标。部分发展中国家则没有这方面的产品,只能依赖进口。 “在我国,大功率半导体产业整体处于发展期,产品的市场推广和应用与国外公司比,竞争力还不强,一些国家重
[半导体设计/制造]
IU8689+IU5706 单声道100W/立体声60W同步升压+功放IC大功率拉杆音箱应用组合方案
引言 目前中大功率拉杆音箱主要采用12V铅酸电池为供电电源,在电源直供的时候,一般的功放芯片输出功率在20W左右(喇叭为4欧、THD10%)。超过50W的功率现阶段市场上主要采用升压芯片+TPA3116的组合解决方案。 随着竞争的加剧,音响厂家对于成本的控制、国产替代的需求越来越迫切。深圳市永阜康科技有限公司推出基于IU8689+IU5706、单声道100W/立体声2x 60W同步升压+功放IC大功率拉杆音箱应用组合方案,升压效率高达96%。在提供更大功率输出的前提下,整套方案组合极具性价比。 IU8689+IU5706功率输出典型指标 单声道:108W/28V/4欧/THD10% 立体声:2*75W/24V/4欧/
[嵌入式]
IU8689+IU5706 单声道100W/立体声60W同步升压+功放IC<font color='red'>大功率</font>拉杆音箱应用组合方案
丰田中国全新大功率氢燃料电池系统上市,最高效率接近65%
5月16日,据丰田中国官方消息,其联合燃料电池系统研发(北京)有限公司(以下简称FCRD),以及华丰燃料电池有限公司(下称“华丰”)最新推出的TL Power 150全新一代大功率氢燃料电池系统已正式上市。 图片来源:丰田中国 此次推出的新品具有质量轻、体积小、功率大、效率高、氢耗低、可快速响应等特点,其FCPC、电堆、BOP三层构造,可实现系统高度集成化,关键零部件经充分验证,系统可靠性高、使用寿命长,具备优越的全生命周期经济性,该产品大功率的设计可以满足城际客车、重卡等动力需求,适应多种应用场景,可实现多系统化。 从具体产品参数来看,TL Power 150氢燃料电池系统长宽高为950*690*715mm,重
[汽车电子]
丰田中国全新<font color='red'>大功率</font>氢燃料电池系统上市,最高效率接近65%
集成式大功率LED路灯散热器的结构设计
发光二极度管LED( L ight Em itting D iode) , 作为新一代绿色环保型固体照明光源, 已经成为人们关注的焦点。它具有耗电量少、光色纯、全固态、质量轻、体积小、环保等一系列的优点。LED 发光时会有部分能量转化为热量, 因此会使LED芯片温度升高。而温度对LED芯片的工作性能影响极大, 高温会导致芯片出射的光子减少, 色温质量下降, 加快芯片老化, 缩短器件寿命等严重的后果。因此为保证LED正常工作, 必须将其散发出来的热量及时的散发出去。目前大功率LED 芯片应用的越来越多, 据资料显示大功率LED 只能将约10% ~15%的输入功率转化为光能, 而将其余85% ~ 90%转化为热能 , 因此散热问题更为
[电源管理]
集成式<font color='red'>大功率</font>LED路灯散热器的结构设计
新能源系统中大功率双向DC-DC的测试
传统电网下,电力来源各种发电站,再由电网传输到用户端,是典型的单向传输。在新能源的时代,除了传统的集中式发电,居民或工厂可以通过屋顶光伏发电,除自用外,还可以储存,或输出到电网,甚至电动汽车都可以是分布式能源储存和供应者。 新能源驱动下的传统电网变革图 在新的体现架构中,有一个处于C位的电能转换部件居功至伟,就是双向的DC-DC,它将电能在储能系统和发电、用电系统实现互通互联。与传统的单向DC-DC相比,双向DC-DC可以显著降低系统成本,在确保转换效率的同时,简化系统,降低故障率。 如下图所示,一个典型的新型的双向DC-DC转换电源结构,电能既可以从左向右,也可以从右向左流动,标识也从之前的Input和Out
[测试测量]
新能源系统中<font color='red'>大功率</font>双向DC-DC的测试
大功率LED种类及测试标准
中心议题: 大功率LED种类及测试标准 解决方案: 电流细调电流粗调电压细调电压粗调 表笔短路(电压3-5V)调节所需电流 分开表笔调节所需的电压 红笔接LED正极黑笔接LED负极 一、Superflux(4Pin,插件式,单颗功率0.2W) 1、单颗测试电压最大4V,4颗串联测试电压16V,12颗串联测试电压48V测试电流:红色,琥珀色为70mA,电流限制为0.07A。蓝色,绿色为50mA电流限制为0.05A。测试前须先调整好电流,选择合适的电压,然后再进行大功率LED测试。 2、SuperfluxLED识别图片 二、Luxeon&Lambert(贴片式,焊接机焊接,单颗功率1W) 1、单颗测试电压最大4
[电源管理]
<font color='red'>大功率</font>LED种类及测试标准
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved