OTA云平台架构及关键技术

发布者:电子创意达人最新更新时间:2024-10-29 来源: elecfans关键字:OTA  云平台架构  汽车电子系统 手机看文章 扫描二维码
随时随地手机看文章

OTA 技术最早应用在 PC 电脑和移动手机行业,近几年才开始在汽车行业中 广泛应用。然而车内通讯网络的复杂性、汽车电子系统的碎片化等因素限制着 OTA 技术整车范围普及。本章从 OTA 定义与应用场景、OTA 实现流程和“云-管-端”关键技术进行研究,为行业从业者对 OTA 技术的设计开发、技术验证和生产工作提供参考。


一、汽车 OTA 定义与应用场景

1.1  OTA 定义及分类

OTA 是 Over the Air 的缩写,通常指的是远程无线方式,OTA 技术可以理解为一种远程无线升级技术。在无特别说明情况下,本文所指的 OTA 是所有汽车远程升级的统称。实现 OTA 的基础是车辆具备远程联网功能,这意味着正是智能网联汽车渗透率的快速增长,推动了 OTA 的快速普及。

OTA 的本质是通过技术实现软件更新,智能网联汽车与传统汽车的软件升级不同之处在于,通过 OTA 技术,原始设备制造商(OEM)可以不用通过售后服务中心,而是直接远程连接目标联网车辆,将软件更新推动至待升级的车辆。

随着 OTA 的应用越来越广泛,针对升级对象的不同,延伸出来很多不同的 概念。人们在谈及 OTA 相关业务时通常会在前面增加一个具体对象,用于表明使用 OTA 技术实现何种功能,比如远程软件升级、远程固件升级、远程配置、远程数据更新等。然而在一些 OTA 解决方案中,已经模糊了不同类型远程升级的边界,将所有可升级的软件对象抽象为软件簇,而软件簇包含了从小到配置字信息大到整个操作系统固件所有颗粒度的对象。并且,GB《汽车软件升级通用 技术要求》中对软件升级(Software Update)的定义已经涵盖了下述几种 OTA 概念(远程诊断除外)。

1.1.1  远程软件升级(SOTA)

SOTA(Software Over-The-Air),即远程软件升级,是指在操作系统的基础上对应用程序进行远程升级。SOTA 通过远程下载并给车辆安装“应用程序升级包”,来实现控制器功能的一个“增量”更新, 一般应用于娱乐系统和智驾系统。

SOTA 一般涉及应用层小范围的功能局部更新,不包括汽车核心系统,对整 车性能和安全影响较小,升级前置条件要求较低。SOTA 的增量更新策略, 可以大幅减小升级包文件大小、从而节约网络流量和存储空间。

1.1.2  远程固件升级(FOTA)

FOTA(Firmware Over-The-Air),即远程固件升级,是指囊括车辆底层算法至顶层应用的综合升级,在不改变车辆原有配件的前提下,通过远程下载并写入新的固件程序进行设备升级。FOTA 包括驱动、系统、功能、应用等的升级,与硬件的更换没有关系。

FOTA 涉及车辆的核心系统,包括但不限于汽车动力控制系统、底盘电子系 统、自动驾驶系统、车身控制系统等核心零部件的控制系统,可以改变车辆的充放电、动能回收、加速性能、辅助驾驶系统逻辑等与深度驾控有关的体验。理论上所有支持固件更新的电子控制单元(ECU)都可以涵盖在 FOTA 范围中。

1.1.3  远程配置(COTA)

COTA(Configuration Over-The-Air),即远程配置,是指通过 OTA 的方式实现远程修改配置字,以达到修改软件功能配置的目的。配置字是一组以数据标识码(DID)方式存储在 ECU 上的数据,可通过诊断指令进行读取和修改。它根据特定的编码规则与车辆功能特征码一一对应,通过配置可判断车辆的功能配置,软件可根据配置实现相应的功能。远程配置常见的应用场景是远程开启和关闭某项功能,例如软件订阅功能。

1.1.4  远程诊断/远程数据更新(DOTA)

DOTA 有两种常见解释:

DOTA(Data Over-The-Air),即远程数据更新,是指一些独立于软件程序存在的数据包的更新,比如,地图数据、语音数据和算法模型数据等。这类更新的特点是数据量比较大,更新流程相对独立,比如,地图数据通常由地图应用自行更新,而数据量也可能高达几 G 到几十G。

DOTA(Diagnostic Over-The-Air),即远程诊断,通过云平台实时数据采集监控,主动性地检查汽车系统异常问题,为远程问题修复与人工问题修复提供决策依据。远程诊断的触发方式有两种,一种是用户在车辆上发现异常状况的响应式;另一种是周期性收集通讯网络、应用程序、硬件效能、使用操作记录、系统程序等状态信息,利用大数据后台分析监测故障。

1.1.5  其他类型(XOTA)

随着汽车智能化程度越来越高,除了车辆本身软件的升级外,还可能会涉及 到外部智能设备交互功能的软件更新,比如,智能钥匙、AR 设备等。目前有些企业和组织将所有与车辆相关联的软件升级统称为 XOTA,即 Everything Over-The-Air 的意思。

1.2 OTA 应用场景

1.2.1 车辆生命周期维度

从开发者编译生产出目标版本软件,到该软件更新至目标硬件设备上的全过 程涉及多个阶段。在不同的阶段,受产品形态和生产环境限制,所适用的软件更新目的和手段也有所不同,如下表 2- 1 所示。目前,大部分车企的 OTA 主要集中在售后软件更新,但不论是从效率上还是成本上 OTA 都体现出了巨大的优势。随着 OTA 应用越来越成熟,从单一的售后升级场景向更多的应用场景发展是的必然趋势。

表 2-1  车辆生命周期维度的软件更新应用

 

车辆生命周期软件更新目的及手段
零部件阶段ECU 供应商产线是最早可以切换到最新软件版本的节点,该节点进行软件切换可避免旧版本软件继续生产从而流向下游,称为供应商产线断点。由于该阶段还是零件状态,通常只能通过芯片烧录工具或者供应商特定的工具进行软件更新,不适用OTA 方式。
总装阶段由于零件需提前订购,仍有一定量的零部件在供应商产线断点前流转到 OEM 库存,总装线的电检工位可以完成部分软件的刷写,称之为 EOL(End of Line)软件刷写。然而 EOL软件刷写会影响产线节拍,导致 OEM 不会在产线进行大量软件刷写。
总装完成时车辆已经具备 OTA 的条件,如果通过 OTA 方式进行产线刷写,可实现多车并线刷写且不受产线工位影响,将极大提高产线软件灌装的效率。目前,已经有个别企业实现总装阶段 OTA。
驳运阶段车辆从总装线下线到经销商库存要经过一定的驳运过程。对于体量大且紧急程度不高的软件,在总装线灌装会影响效率,如果利用驳运过程进行软件更新,能降低对产线节拍的影响。OTA 使得利用驳运过程更新软件成为一种可能,但在驳运过程中更新对电源供应管理及车辆安全是否有影响需要更深一步考虑。
售前库存经销商通常有一定的库存车辆,在正式销售前库存车辆可能需要对软件版本进行升级。以往是在进行最终售前检查时,将软件更新到最新版本,存在更新时间长,影响用户交付体验等问题。
OTA 技术可将库存车辆自动同步至最新版本,大大减少在交付过程中软件更新的耗时,提升效率。
售后阶段过去的售后阶段软件更新,用户需要将车驾驶到指定维修站完成更新。
通过OTA 技术,用户可随时随地通过简单操作完成软件更新,使车辆“常用常新” 。目前已成为汽车企业增加用户粘度和解决软件售后问题及构建生态服务体系的一个重要手段。

 

1.2.2  软件运营管理维度

从软件运营管理的维度 OTA 的典型应用场景如下表 2-2 所示。

表 2-2  软件运营管理维度的软件更新典型应用场景

 

典型应用场景应用场景描述
软件召回软件引起重大功能缺陷时,例如存在功能安全、网络安全/数据安全重大风险、法规相关问题,通过OTA 方式召回,可以在短时间内批量完成问题软件的修复,尽可能降低软件缺陷造成的影响,效率高且成本低。
问题修复对于一些非严重性问题,通过OTA 方式,可以周期性推送软件版本,进行问题修复。
性能优化与缺陷修复类似,OTA 方式的便捷性,使得性能优化类的软件更新也逐渐得以重视,目前已经是常见的OTA 场景之一。
软件个性化定制此应用场景通常为COTA 应用,比如用户可根据个人需求,完成怠速调整、车下启动/熄火,自动启停等参数的设置更新。
新功能交付OTA  使得售后软件功能持续迭代成为可能。通过 OTA  可新增功能的多少,已成为用户评价OEM 的对重要指标之一。
付费功能订阅功能订阅是新功能交付应用场景衍生出来的一种新的行业形态。车企在售卖车辆之后,针对部分新增软件功能以付费方式供用户购买使用。这使得车企除了车辆销售之外,有了新的盈利可能性,这也是目前汽车企业非常乐于探索的一种 OTA 应用场景。

 

二、 汽车 OTA 技术体系   

2.1  OTA 实现流程

汽车软件更新的本质是将供应商或者 OEM 内部开发部门编译出来的软件或 者数据替换当前车辆 ECU 中的版本,以实现预期的特定功能。因此,汽车软件升级所需要的核心工作是建立远程传输链路并实现 OEM 云端系统远程更新车辆 ECU 中的软件数据。同时,为了准确、安全、可靠地完成 ECU 软件的更新,OTA 系统需要云端管理系统对软件、升级对象进行管理,以实现人工操作到自动化的转变;车端系统需要完成软件数据的接收和分发工作,并保证无专业技师操作情况下的安全升级。 

9f3532c4-a909-11ee-8b88-92fbcf53809c.jpg

图 2-1:OTA 实现流程(来源 AutoSAR)    

图2-1 是一个典型的 OTA 系统框架,包含了三个基本要素,即云端的 OTA 平台、车端 OTA 主控、OTA 对象。其中:OTA 云平台负责 OTA 升级包管理、车辆管理及 OTA 发布等功能,车端 OTA 主控负责从 OTA 云平台下载升级包并将其刷写到目标 ECU ,OTA 升级对象即最终软件刷写的主体,从主控接收软件并完成自身软件更新。OTA 的基本实现流程(图2-1)可归纳为下表 2-3 所示步骤。

表 2-3  OTA 的基本实现流程

 

步骤内容
1.  升级包制作ECU 供应商或车企内部开发团队完成软件开发并编译产生新版本的软件, 通过约定的方式制作成升级包。
2.上传软件供应商或 OEM  内部开发部门生产的软件验证合格后,经由产品生命周期管理系统(PLM)或类似的系统流转到OTA云平台,供更新使用。
3.OTA  任务发 布发布过程是选定特定软件,通知至指定目标车辆,通常由OTA 运营人员完成。发布之后的软件通常经过一系列安全处理后传至专门的文件服务端供车辆下载。
4.下载升级包OTA发布完成后,通常OTA云平台需要通知车端OTA主控执行软件更新动作,OTA主控根据与云平台命令交互获取信息,从指定文件服务端地址下载所需要的升级包;不同的OTA系统可能由于升级对象升级包大小原因,OTA主控不会直接下载升级包而是通过相关命令控制目标ECU 完成其所需升级包的下载。
5.安装安装过程是由 OTA  主控根据约定的协议,将目标升级软件刷写到对应 ECU  指定存储介质。ECU 硬件不同、通信方式不同,通常安装的过程会有所差异。
6.校验软件安装前后需要进行完整性校验及真实性校验。完整性校验保证安装过程传输的数据没有被篡改,真实性校验保证所安装软件没有被仿冒伪造。
7.激活根据ECU结构不同,安装步骤可能还会包含激活操作,即双备份分区ECU更新完成后进行分区切换。此外,OTA主控除了处理控制安装过程外,还需要控制车辆的状态,保证升级过程车辆的安全。
8.回滚针对升级异常的情况,将软件版本恢复到升级前版本的过程,主要目的在于保证升级失败ECU功能仍可用。
9.状态上报OTA主控需要将升级状态同步到OTA云平台,保证 OTA云平台可以根据车辆最新状态编排升级任务。同时,可根据业务实际情况,同步更新过程中各阶段状态至OTA云平台,以便更精准地控制升级。

 

2.2  OTA 云平台架构及关键技术    

OTA 云平台是支撑 OTA 业务正常运行的相关云端系统的集合,既包括实现 OTA 核心功能的 OTA 服务端,也包括了其他关联系统如企业 IT 管理系统、安全服务端、web 控制台以及文件服务端。OTA 云平台业务范围涉及软硬件生命周期管理、业务流程整合、软件远程分发等软件更新所有相关业务,是一个软件升级管理体系(SUMS)。

2.2.1  云平台架构

基于 OTA 产品业务形态,结合系统组件之间松耦合高内聚的标准,行业内 普遍将云平台设计为 4 层的分层架构型式,如图 2-2 所示,包括前端展示层、路由网关层、业务服务层和数据存储层。前端展示层是系统与用户交互的 web 应用层,用户访问和操作云平台系统的交互接口;网关路由层包括指令控制层和网关接入层,是云平台与车端建立通信链接以及控制车端流程的通信中间件;业务服务层负责所有 OTA 相关业务逻辑的处理,包括车辆、软件包管理、策略管理等诸多业务模块,是 OTA 云平台的核心;数据存储层负责 OTA 所有业务相关数据存储,包括基本的数据库集群数据缓存和大文件存储等。

9f3f8936-a909-11ee-8b88-92fbcf53809c.png

图 2-2  OTA 云服务框架图

(1) 前端展示层

前端展示层的划分,是基于前后端分离开发方式设计的架构分层模式,主要 负责 Web 端用户交互页面的功能。核心思想是前端页面通过调用后端的接口并进行交互,前端专注于交互页面的开发,业务逻辑由后端负责。对 OTA 云平台而言,前端展示层可以理解为业务服务层的用户交互接口,其展示功能与具体业务功能一一对应。

         

 

(2) 指令控制层

各业务平台与网关接入层的连通介质,接收来自业务系统指令并将指令发送 至网关可访问的缓存中,接收来自网关回写的升级状态至各业务系统可访问的消息队列中。

(3) 网关接入层

针对不同的数据格式及上层需求,接收封装来自车载终端传输的数据,并流

向缓存、消息队列等中间件。

(4)业务服务层

业务服务层是 OTA 服务所有业务及相关流程管理功能在云平台端的实现, 除了车辆管理服务、软件包服务、版本服务、策略管理和任务管理 5 个支撑 OTA 的核心功能外,还包括关联系统审批、数据对接、信息安全服务、测试、统计分析、日志查询等重要辅助功能。由于不同的企业内部管理存在差异,云平台所支持的辅助业务可能存在较大差异,常见服务列举见表 2-4。

表 2-4 常见服务举例

 

常见服务业务内容
车辆管理服务维护所有可升级车辆的信息,包括品牌、车型、配置以及每个单车所包含的可升级设备信息等。
软件包服务用于控制器升级包的在线管理、差分包的制作及管理,相当于OTA 的仓库管理,需要维护不同车型所有 ECU 不同版本的所有软件实体,包含软件包的签名加密以及各版本与其关联关系等。
版本服务包括基线版本管理、软硬件版本及版本号管理,每个软硬件版本的依赖条件管理,并维护每一个软件版本所适用的品牌、车型、配置等。
策略管理服务需适配各种复杂软件更新,提供灵活的设备群组管理、下发条件配置,支持升级任务策略配置,满足各类升级需求。
任务管理服务对升级推送任务的管理,每次选择特定版本的软件包向指定车辆推送即可视为一个任务。任务管理包含:1)任务条件设定,如任务所适用的车型、升级模式、升级策略、任务有效时间; 2)发布车辆选择,指定将该任务适用于哪些车辆,可加入黑白名单,批量导入汽车唯一识别码(VIN 码)、标签匹配等业务逻辑;3)任务的基本操作,如创建、暂停、取消等。
审批服务功能在于把传统的线下软件发布的审批流程通过 OTA 平台实现在线化,达到自动流传,提高效率的作用。
数据对接服务数据对接的系统包括 PLM、MES、EOL、DMS、ADS,数据对接涉及到软件版本信息获取、车辆信息初始化、用户信息、售后信息同步等。
信息安全服务用于保证OTA 的安全,主要通过与PKI 系统对接完成升级包的签名加密,车端设备的身份认证,通信链路的认证和加密。
安全访问控制 服务通过云平台端的安全访问控制服务在线化管理会话控制的安全算法,防止未授权的系统或者设备对车辆 ECU 进行软件更新,更利于对每个ECU 实现独立的安全访问方案。
测试服务用于支持OTA 的测试,主要包括OTA 升级策略、升级配置信息和任务等,以保证升级效果符合期望目标。
统计分析服务用于动态统计OTA 升级状态,可以通过可视化展示升级状态,快速了解升级任务进度。同时,可以根据统计分析结果动态调整 OTA 任务推送的车辆数,保证系统资源和售后资源得到最有利的分配。
日志查询服务包含云端日志、车云交互日志以及车端远程日志等查询功能。
基础信息服务主要针对OTA 云平台本身的信息管理,如账号权限管理等。

 

(5) PKI 系统

公钥基础设施(Public Key Infrastructure,PKI):基于公钥密码体制实现数字证书的发布、撤销和管理等功能,并为数字证书用户提供相应服务的系统。其目的在于创造、管理、分配、使用、存储以及撤销数字证书,可以用来保证通信对象的身份真实性、软件程序的来源真实性和完整性、通信行为的不可否认性等。

PKI 在 OTA 系统中的作用主要在于为相关实体发放数字证书,通过密码技术保证升级包和升级过程的安全。主要包括车辆证书、设备证书、供应商证书等 的申请和校验;云端对车端身份认证,车端对云端身份认证;升级包的安全认证等。

(6)外部数据系统

外部数据对接的系统可能包括整车生命周期配置系统(VLCS)、远程诊断系 统、软件可售系统及一些其他支撑系统组成。主机厂研发部门需要根据车型的功能规划确定该车型所对应的软硬件相关配置。需要进行软件更新时, 从 VLCS 系统中确定所涉及的车型和影响的功能范围,并依据确定好的范围, 从物料信息管理系统(BOM)中申请软件物料号作为版本控制依据, 供应商软件释放后经由产品生命周期管理系统(PLM)系统通过验证审批后流转到 OTA 服务端供升级使用使用。OTA 服务端管理设备中初始的车辆信息,可通过对接 MES 在车辆下线检验合格后将新生产车辆自动注册到 OTA 云平台,所有升级目标车辆应保证是已 注册车辆。除此之外,根据实际需要还可能会从汽车经销商管理系统(DMS)系 统获取经销商及售后服务站点信息,售后系统通常也需要与 OTA 系统关联以同步最新版本信息以及线下配置更改信息等。

另外, OTA 系统在升级前可通过远程诊断系统获得最新的 ECU 配置信息及 状态信息,并且当远程诊断系统发现问题后,可以通过 OTA 系统下发经过测试验证的补丁包来修复。对于一些有运营需求的主机厂来说,通过 OTA 系统配合软件可售系统,可以实现软件付费升级、功能付费使用等后向运营,真正实现“千车千面”、“用户定义汽车”。

(7)数据存储层

数据存储层包括数据库集群、缓存和存储节点,分别用于存储 OTA 云平台 不同类型的数据。其中,数据库集群,主要用于存储车辆信息版本信息等关系型数据;缓存,为了解决数据库性能瓶颈问题,可以通过多架设一层缓存层来减少对数据库的直接访问;存储节点,针对较大的升级包、配置文件等需要提供车端下载的文件,通常可以存储在分布式存储节点上。

2.2.2  关键技术

(1)安全技术

OTA 服务端以及企业 IT 管理系统、安全服务端、web 控制台、文件服务端 等关联系统,会面临传统云平台的所有安全威胁。为保证 OTA 升级的安全性,常用安全技术如表 2-5 所示。   

 

表 2-5  OTA 云平台常用安全技术

 

名称技术要点
PKI 签名验签技术在升级过程中,OTA 系统采用数字证书签名方案,终端从 OTA 云平台下载的升级包、升级脚本均经过签名处理,升级前需验签正确后才进行升级。
安全访问控制通过云平台端的安全访问控制服务,OTA 车载系统采用网关内置或终端内置的安全访问函数方式实现校验方案,只有全访问验证通过,ECU 才会执行后续对应安全访问等级要求的请求。
数字证书身份认证及信息安全PKI 数字证书用于实现车辆身份管理,车、云身份认证;用于 OTA 云平台与车端上下行消息的加解密、签名、验签。
数据安全通过在组织中建立数据安全管理体系、建设云平台数据全生命周期的主动安全防护和数据安全运营能力,保护数据安全。

 

(2) OTA 技术

OTA 系统常用升级技术如表 2-6 所示。

表 2-6  OTA 云平台常用升级技术

 

OTA技术技术要点
升级包管理用于控制器升级包的在线管理、差分包的制作及管理。
脚本管理用于控制器升级执行脚本文件的在线管理。
升级策略管理用于升级任务执行条件(目标版本对目标车辆、整车状态、控制器状态、时间、信号等影响因素的依赖关系)的在线管理。
升级效率管理制定相关策略提升升级效率,降低升级失败次数。并通过日志分析其原因, 进行技术迭代开发。

 

2.3  OTA 车载端架构及关键技术

2.3.1  车载端架构

OTA 车载端功能模块主要包括 2 大部分,即 OTA 主控和 OTA 对象,如图 2-3 所示。OTA 主控是车端 OTA 系统的核心,车端所有 OTA 业务逻辑均由主控实现,包括上报车辆信息、下载更新文件、升级包安装、车辆状态管理、人机交互等。

9f4d2d0c-a909-11ee-8b88-92fbcf53809c.png

 

 

图 2-3  车载端功能模块(参考 AutoSAR UCM)

(1) OTA 主控功能模块

按照车载端的工作流程,车载端的功能模块包括:OTA 客户端负责与云端进 行数据交互;下载模块负责升级包下载及分发;升级管理模块负责升级过程的控制;升级代理负责执行软件刷写或者软件安装;人机交互模块负责升级信息提示、用户输入、升级过程的展示等,如表 2-7 所示。

表 2-7  OTA 主控功能模块

 

功能模块功能描述
升级管理(OTA Manager)作为 OTA 的核心,管理车辆所有 ECU 的更新过程,控制着将固件更新分发到 ECU,并告知 ECU 何时执行更新,这在多个 ECUs 需要同时更新的情况下尤为重要。
OTA 任务下发到车辆后,OTA    Manager 需要判断车辆条件,对于不符合条件的车辆,需要中止升级任务并上报给云平台,安全完成软件升级后, 也要上报云端。若想实现单车定制化功能,OTA Manager 还需能够灵活定义升级的具体范围,升级时机,升级内容,提示事项,失败后给用户的失败处理提示等。
OTA 客户端负责 OTA 主控与 OTA 云平台交互,包括下发 OTA 云平台的 OTA 控制命令,反馈控制命令的执行结果,发起更新检查请求,同步升级过程状态等。
下载管理模块负责从文件服务端下载升级所需升级包和文件,支持断点续传,保证升级包可以分多次下载,同时也避免部分重复下载造成流量浪费。
安装模块负责将升级包安装到对应的 ECU。不同的 ECU 类型会需要不同的安装模块,比如 FBL 安装模块用于仅支持 Bootloader 升级 ECU,AB 安装模块用于支持 AB swap  双备份分区升级方式的 ECU,  其他安装模块主要是指一些采用私有协议进行升级的智能 ECU
车辆状态管理负责确保车辆在安全状态下进行升级,其功能主要包括两个:
① 车辆状态判断,通过预设条件判断判断车辆状态是否满足 OTA 的要求,比如判断车辆的电池电量是否足以支持完成升级、车辆是否处于非行驶状态等,这些条件通常是通过监控车辆相关的信号实现;
② 车辆状态控制,  通过特定的控制命令或者信号值,限制车辆非升级必须的功能,保证升级过程车辆状态不可被改变,从而维持在安全状态。
人机交互接口人机交互接口是 OTA 主控通过相关显示设备与用户进行交互的操作接口,控制 OTA 相关信息在车内的娱乐主机显示屏或者手机 APP 等设备上的显示。

 

[1] [2]
关键字:OTA  云平台架构  汽车电子系统 引用地址:OTA云平台架构及关键技术

上一篇:为什么电动汽车制造商要转向800伏电压
下一篇:汽车产业10大关键材料盘点

推荐阅读最新更新时间:2024-11-12 18:46

上汽通用汽车将首次启动大规模车载互联系统OTA升级
上汽通用汽车今日宣布,从12月起至2021年2月,将对别克、雪佛兰和凯迪拉克旗下17个车系的车载互联系统进行OTA远程升级,通过交互界面的更新优化、车联应用的功能升级,带给用户焕然一新的互联体验。这是上汽通用汽车首次针对车载互联系统启动大规模OTA升级,展现企业在“网联化”发展上取得的重要突破。据悉,上汽通用汽车今后车载互联系统OTA将保持一年多次的更新频率,覆盖旗下80%以上的车型。未来,随着新车型的推出,这一比例还将不断提升。 上汽通用汽车将首次启动大规模车载互联系统OTA升级 通过此次OTA远程升级,上汽通用汽车的车载互联系统将带来更智能的语音交互、更丰富的内容资源、更炫
[汽车电子]
上汽通用<font color='red'>汽车</font>将首次启动大规模车载互联系统<font color='red'>OTA</font>升级
艾拉比:目标全球OTA第一品牌,做OTA领航风向标
在结束不久的2019亚洲消费电子展(CES Asia 2019)上,艾拉比(ABUP)展示了它的汽车与物联网OTA解决方案,除了完整的智能化云诊断平台和首次亮相的勤壮工程诊断工具链外,艾拉比还展示了以差分升级技术为核心的物联网OTA解决方案。 在参观了现场的展台后,笔者同艾拉比市场副总裁万学靖与艾拉比产品副总裁赵毅,围绕连接与升级进行了深入访谈,以下是整理后的部分采访内容。 在经历了汽车OTA市场的打磨后,艾拉比显然没有将眼光局限于某一个单一的市场。从汽车OTA到物联网,艾拉比是如何取舍的。 “所有能连接的智能设备都是OTA的服务对象,而目前OTA应用频率最高的是消费电子市场。” 纵深掘进物联网领域的过程中,
[汽车电子]
艾拉比:目标全球<font color='red'>OTA</font>第一品牌,做<font color='red'>OTA</font>领航风向标
理想汽车发布OTA 5.0,智能驾驶正式迈入AD 3.0时代
12月10日,理想汽车举办智能软件发布会,期间理想汽车正式推出了最新的OTA 5.0版本,共包括智能驾驶(AD Max 3.0)、智能空间(SS 3.0)和智能增程(REV 3.0)三大软件升级。 具体来看,在智能驾驶方面,OTA 5.0版本对智驾算法模型进行了重新架构,从原先以多个小模型和人工规则为主的模块化算法架构,升级为以大模型为主的端到端算法架构,理想汽车智能驾驶也由此全面升级到了AD 3.0。 其中理想L系列的Max车型将率先升级至AD Max 3.0,可以实现全场景智能驾驶、全场景辅助驾驶、智能泊车和主动安全四大类别的智驾应用。 特别值得一提的是全场景智能驾驶,将实现高速、城市环路和城区道路全覆
[汽车电子]
理想<font color='red'>汽车</font>发布<font color='red'>OTA</font> 5.0,智能驾驶正式迈入AD 3.0时代
新增连续语音识别/悬架记忆调节等功能 星途瑶光推送OTA升级
日前,我们从星途汽车官方获悉,旗下中型SUV 星途瑶光 ( 参数 | 询价 ) 开启了最新的OTA升级推送,此次升级包括新增连续语音识别、悬架记忆调节以及手机遗忘提醒等功能。不过本次OTA升级仅限瑶光燃油版车型,不包括瑶光C-DM(插电混动版)车型。具体OTA升级详情如下: 新增语音流式识别功能,即发出语音连续指令时无需停顿,系统能够边识别边执行; 新增悬架记忆调节,该功能可以记忆你的驾驶习惯,自动调节悬架设定; 新增手机遗忘提醒功能; 新增氛围灯联动碰撞预警,在紧急情况下,氛围灯瞬间变为红色,以提醒驾驶者注意安全。 此外,在本次OTA升级中,瑶光车型还优化了部分功能的使用体验,具体优化详情如下:
[汽车电子]
新增连续语音识别/悬架记忆调节等功能 星途瑶光推送<font color='red'>OTA</font>升级
汽车电子系统的电磁兼容设计
随着工程师开发日益复杂的方案来满足舒适、安全、娱乐、动力总成、引擎管理、稳定性和控制应用的需求,现代车载电子产品的数量将持续稳定地增长。此外,随着非常复杂精密的电子产品在汽车应用中的日益普及,即使最基本型的车辆也配置了几年前一直是高档车才有的电子设备。  过去,汽车电子的增长动力是舒适和便利等与安全无关的应用。通常,如采用电动升降窗或中控锁,这些产品只不过是取代了现有的机械系统。最近,汽车电子的范畴已经扩展到支持与安全相关的应用,如引擎优化、主被动安全系统以及包括GPS在内的高级信息娱乐系统。   现在,我们正在迎接汽车电子发展的第三次革命。汽车电子不再仅仅支持关键的功能,而且深入到汽车的控制之中,提供重要的驾驶员信息、控制
[嵌入式]
大众是否因OTA升级问题将推迟发布高尔夫8计划?
按照大众的计划,曝光过很多回的下一代高尔夫将在今年9月的法兰克福车展上亮相,不过近日有消息称大众因为软件层面的一些问题,将会推迟发布高尔夫8的计划。这个软件问题主要就是关于OTA升级。 OTA在新兴造车和纯电动车上已经不少见,最早从特斯拉开始,车机系统甚至包括动力、充电相关的底层系统和功能都可以通过OTA直接实现升级或增加,而不再需要跑回经销商那里花费时间和金钱来进行所谓的“有线升级”。考虑到安全性和统一性的问题,传统车企并没有过于激进地推进提供OTA的功能。 我们已知的是,OTA是大众即将要实现的一项重要功能,最晚也会在ID.家族系列的车型上搭载。但考虑到高尔夫8也推迟到明年上市,在时间上已经与ID.系列中第一款车
[嵌入式]
大众是否因<font color='red'>OTA</font>升级问题将推迟发布高尔夫8计划?
特斯拉OTA更新升级,提高加速时操控性,修复Model S钥匙卡漏洞
众所周知,汽车制造商可以通过软件来对信息娱乐系统或其他车辆电子设备进行更新。在生活智能化的今天,我们已经习惯了这一点。但是,大多数汽车制造商都要求通过经销商来进行这类更新。 在之前,没有厂商通过OTA对车辆进行大的升级,而现在,特斯拉可通过OTA进行软件更新。此外,除了我们提及过的对信息娱乐功能进行更新以外,特斯拉还可以远程进行更多功能的升级。 以安全功能为例,特斯拉Autopilot可继续通过OTA系统进行升级,特斯拉还可以通过这些更新来提高车辆性能。 前不久,特斯拉对新版Model S和Model X 进行了更新,不仅对悬架系统的调教进行了升级,还提高了以时速160km/h行驶时的乘坐舒适度。 现在
[汽车电子]
特斯拉<font color='red'>OTA</font>更新升级,提高加速时操控性,修复Model S钥匙卡漏洞
谁在引领百万豪华纯电市场的OTA革命浪潮?
9月11日, 路特斯Eletre ( 参数 | 询价 ) 正式宣布第三次OTA,新增高快路辅助拨杆变道、AR导航功能,优化充电预热、语音切换导航目的地功能,同时对杜比音效视觉和其它功能项进行了优化以及修复。 这是迄今为止Eletre关于功能的第三次重大更新,也是迄今为止百万级纯电动汽车市场当中,少有的能够完成OTA升级的纯电超跑SUV。 事实上,在当前市场中,OTA已经不是一个新鲜的内容。不少的产品都能通过OTA的升级,为用户带来常用常新的体验。但在百万级豪华电动车市场中,能够做到OTA持续升级的,目前只有Eletre。 1、百万豪华电动首搭拨杆变道 此次路特斯通过OTA更新的高快路辅助拨杆变道,属于自动变道辅助
[汽车电子]
谁在引领百万豪华纯电市场的<font color='red'>OTA</font>革命浪潮?
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved