汽车LED驱动电路的设计方案

发布者:自由探索最新更新时间:2024-11-08 来源: elecfans关键字:汽车LED  驱动电路 手机看文章 扫描二维码
随时随地手机看文章

在汽车或汽车中,LED已发展成为照明的首选。无论是后尾灯还是仪表盘中的指示灯,如下图 1 所示,如今都集成了LED。其紧凑的尺寸有助于设计的多功能性,并提供与车辆预期寿命本身一样耐用的期望。


在汽车或汽车中,LED已发展成为照明的首选。无论是后尾灯还是仪表盘中的指示灯,如下图 1 所示,如今都集成了LED。其紧凑的尺寸有助于设计的多功能性,并提供与车辆预期寿命本身一样耐用的期望。


LED实际上是一个P型N型(PN)结二极管,它允许电流仅在一个方向上通过它。一旦 LED 两端的电压达到最小正向电压(VF),电流就开始流动。

LED的照明水平或亮度由正向电流(IF)决定;而 LED 消耗的电流取决于施加在 LED 上的电压。

尽管LED亮度和正向电流IF是线性相关的,但即使LED两端的正向电压VF略有增加,也会引发LED电流摄入的快速增加。

具有不同颜色规格的 LED 由于其特定的半导体成分而具有不同的 VF 和 IF 规格(图2)。有必要考虑每个LED的数据表规格,特别是在单个电路中应用不同颜色的LED时。

图 #2

例如,当使用红绿蓝 (RGB) 照明进行开发时,红色 LED 的正向电压额定值可能约为 2 V,而蓝色和绿色 LED 的额定电压可能在 3 至 4 V左右。

考虑到您采用单个公共电源操作这些 LED,您可能需要为每个彩色 LED 配备一个计算良好的限流电阻,以避免 LED 劣化。

热效率和功率效率

除了电源电压和电流参数外,温度和功率效率同样需要仔细分析。虽然,施加在LED上的大部分电流被转换为LED光,但少量功率在器件的PN结内转化为热量。

LED结上产生的温度可能会受到一些外部参数的严重影响,例如:

通过大气温度(TA),

通过LED结和环境空气之间的热阻(RθJA),

以及功耗 (PD)。

以下公式1揭示了LED的功耗规格PD:

PD =VF × IF ------------方程 #1

借助上述方法,我们可以进一步推导出以下计算LED结温(TJ)的方程:

TJ = TA + RθJA × PD ---------- 方程 #2

不仅在正常工作条件下,而且在设计的绝对最高环境温度TA下,对于最坏情况的关注,确定TJ至关重要。

随着LED结温TJ的升高,其工作效率下降。LED 的正向电流 IF 和结温 TJ 必须保持在数据手册分类的绝对最大额定值以下,以防止损坏(图

3)。

图 #3

除了LED,您还应考虑电阻和驱动元件(如BJT和运算放大器)的功率效率,特别是随着分立元件数量的增加。

驱动器级的电源效率不足、LED导通时间和/或环境温度所有这些因素都可能导致器件温度升高,影响BJT驱动器的电流输出,并降低LED的VF降。

随着温度的升高降低LED的正向压降,LED的电流消耗率上升;导致功率耗散PD和温度成比例增加,这导致LED的正向压降VF进一步降低。

这种温度持续上升的循环,也称为“热失控”,迫使LED在最佳工作温度以上工作,导致快速退化,并在某个时候器件发生故障,因为中频消耗水平增加。

线性 LED 驱动器

通过晶体管或IC线性操作LED实际上非常方便。在所有可能性中,控制LED的最简单方法通常是将其直接连接到电源电压源(VS)。

使用合适的限流电阻可限制器件的电流消耗,并固定LED的精确压降。以下公式3可用于计算串联电阻(RS)值:

借助上述方法,我们可以进一步推导出以下计算LED结温(TJ)的方程:

TJ = TA + RθJA × PD ---------- 方程 #2

不仅在正常工作条件下,而且在设计的绝对最高环境温度TA下,对于最坏情况的关注,确定TJ至关重要。

随着LED结温TJ的升高,其工作效率下降。LED 的正向电流 IF 和结温 TJ 必须保持在数据手册分类的绝对最大额定值以下,以防止损坏(图

3)。

图 #3

除了LED,您还应考虑电阻和驱动元件(如BJT和运算放大器)的功率效率,特别是随着分立元件数量的增加。

驱动器级的电源效率不足、LED导通时间和/或环境温度所有这些因素都可能导致器件温度升高,影响BJT驱动器的电流输出,并降低LED的VF降。

随着温度的升高降低LED的正向压降,LED的电流消耗率上升;导致功率耗散PD和温度成比例增加,这导致LED的正向压降VF进一步降低。

这种温度持续上升的循环,也称为“热失控”,迫使LED在最佳工作温度以上工作,导致快速退化,并在某个时候器件发生故障,因为中频消耗水平增加。

线性 LED 驱动器

通过晶体管或IC线性操作LED实际上非常方便。在所有可能性中,控制LED的最简单方法通常是将其直接连接到电源电压源(VS)。

使用合适的限流电阻可限制器件的电流消耗,并固定LED的精确压降。以下公式3可用于计算串联电阻(RS)值:

RS = VS - VF / IF ---------- 等式 #3

参考图 #4,我们看到 3 个 LED 串联使用,VF 计算应考虑 3 个 LED 上的整个压降 VF(LED 的正向电流 IF 保持不变)。

图 #4

虽然这可能是最简单的LED驱动器配置,但在实际实现中可能非常不切实际。

电源,尤其是汽车电池,容易受到电压波动的影响。

电源输入的微小增加会触发LED消耗更多的电流,从而被破坏。

此外,电阻中过大的功率耗散PD会增加器件温度,从而导致热失控。

面向汽车应用的分立式恒流LED驱动器

当使用恒流功能时,它可确保增强的节能和可靠的布局。由于最普遍的LED操作技术是通过开和关开关,因此晶体管可实现良好调节的电流供应。

图 #5

参考上面的图5,根据LED配置的电压和电流规格,可以选择BJT或MOSFET。与电阻器相比,晶体管易于处理更大的功率,但容易受到电压上下和温度变化的影响。例如,当BJT周围的电压上升时,其电流也会成比例增加。

为了保证额外的稳定性,可以定制这些BJT或MOSFET电路,以提供恒定电流,尽管电源电压不平衡。

设计 LED 电流源

图6至图8展示了一些电流源电路图示。

在图6中,齐纳二极管在晶体管基极产生稳定的输出电压。

限流电阻RZ确保受控电流,使齐纳二极管正常工作。

齐纳二极管输出产生恒定电压,不受电源电压波动的影响。

发射极电阻RE上的压降应补充齐纳二极管的压降,因此晶体管调节集电极电流;这可确保通过LED的电流始终保持恒定。

使用运算放大器反馈

在下面的图7中,显示了具有反馈环路的运算放大器电路,用于构建理想的汽车LED控制器电路。反馈连接确保输出自动调整,以便在负输入处产生的电位保持等于其正基准输入。

齐纳二极管被箝位以在运算放大器的同相输入端产生基准电压。如果LED电流超过预定值,它会在检测电阻RS上产生成比例的电压,试图超过齐纳参考值。

由于这会导致运算放大器负反相输入端的电压超过正基准齐纳值,因此迫使运算放大器输出关闭,从而降低LED电流以及RS两端的电压。

这种情况再次将运算放大器输出恢复为开启状态并激活LED,运算放大器的这种自调节动作继续无限确保LED电流永远不会超过计算出的不安全水平。

上面的图 8 显示了使用几个 BJT

完成的另一种基于反馈的设计。在这里,电流通过R1流动,接通晶体管Q1。电流继续通过R2,固定正确的电流量通过LED。

如果通过R2的LED电流试图超过预定值,R2两端的压降也会成比例增加。当这个压降上升到晶体管Q2的基极到发射极电压(Vbe)时,Q2开始导通。

Q2现在开始通过R1吸收电流,迫使Q1开始关闭,并且条件保持自我调节通过LED的电流,确保LED电流永远不会超过不安全的水平。

这种带反馈环路的晶体管限流器根据R2的计算值保证为LED提供恒定电流。在上面的例子中,实现了BJT,但对于更高电流的应用,在该电路中使用MOSFET也是可行的。

使用集成电路的恒流LED驱动器

这些基本的基于晶体管的构建模块可以很容易地复制来操作多个LED串,如图9所示。

控制一组 LED 串会导致元件数量增加,占用更高的 PCB 空间并消耗更多通用输入/输出 (GPIO) 引脚。

而且,这样的设计基本上没有亮度控制和故障诊断的考虑,这是大多数功率LED应用的基本需求。

要包括亮度控制和故障诊断等规格,需要额外数量的分立元件和额外的设计分析程序。

包含更多LED的LED设计会导致分立电路设计包含更多数量的零件,从而增加电路的复杂性。

为了简化设计过程,应用专用IC作为LED驱动器被认为是最有效的。如图9所示,使用基于IC的LED驱动器可以简化图10所示的许多分立元件。

图 #10

LED 驱动器 IC 专为处理 LED 的关键电压、电流和温度规格而设计,并可最大限度地减少器件数量和电路板尺寸。

此外,LED驱动器IC可能具有用于亮度控制和诊断的附加功能,包括过温保护。也就是说,使用基于BJT的分立设计也可以实现上述高级功能,但相对而言,IC似乎是一种更容易的选择。

汽车 LED 应用的挑战

在许多汽车LED实现中,亮度控制成为一种必不可少的问题。

由于通过LED调节正向电流IF按比例调节亮度水平,因此可以采用模拟设计来实现结果。LED亮度控制的数字方法是通过PWM或脉宽调制。以下详细介绍了这两个概念,并展示了如何将它们应用于汽车LED应用

模拟和PWM LED亮度控制之间的差异

图11评估了控制LED亮度的模拟和数字方法之间的主要区别。

图 #11

通过使用模拟LED亮度控制,LED照明通过流动电流的大小来改变;电流越大,亮度越大,反之亦然。

但是,模拟调光或亮度控制的质量并不令人满意,特别是在较低的亮度范围内。模拟调光通常不适用于与颜色相关的 LED 应用,如 RGB

照明或状态指示灯;因为不同的IF往往会影响LED的颜色输出,导致RGB LED的颜色分辨率较差。

相比之下,基于PWM的LED调光器不会改变LED正向电流IF,而是通过改变LED的ON/OFF开关速率来控制强度。然后,平均导通时间LED电流决定LED上的比例亮度。它也被称为占空比(脉冲宽度与PWM脉冲间隔的比值)。通过PWM,更高的占空比会导致通过LED的平均电流更高,从而导致更高的亮度,反之亦然。

由于您可以根据各种照明范围微调占空比,因此与模拟调光相比,PWM 调光有助于实现更宽的调光比。

虽然PWM保证了增强的亮度控制输出,但它需要更多的设计分析。PWM频率必须比我们的视觉可以感知的要高得多,否则LED最终可能会看起来像在闪烁。此外,PWM调光电路因产生电磁干扰(EMI)而臭名昭著。

来自 LED 驱动器的干扰

在EMI控制不足的情况下构建的汽车LED驱动器电路可能会对其他相邻的电子软件产生不利影响,例如在收音机或类似的敏感音频设备中产生嗡嗡声。

LED驱动器IC当然可以为您提供模拟和PWM调光功能,以及解决EMI问题的补充功能,例如可编程压摆率,或输出通道相移或群延迟。

为了能够向汽车用户提供诊断警报,车身控制模块(BCM)中的智能高边开关通过尾灯元件记录故障,如上图12所示。

话虽如此,通过BCM识别LED故障可能很复杂。有时,您可能会使用相同的BCM板设计来检测基于白炽灯泡的标准电路或基于LED的系统;因为与白炽灯泡相比,LED电流往往要小得多,因此区分了逻辑LED负载。

结论

如果电流检测诊断设计不准确,则可能难以识别开路或断开的负载。BCM 无需使用单个开路 LED 串,而是更容易检测到整个 LED

串,以报告开路负载情况。一种条件,可确保如果单 LED 出现故障,则可以执行全 LED 故障标准,以便在检测到单个 LED 故障时关闭所有

LED。汽车线性LED驱动器包括允许一个故障-所有故障反应的功能,并且可以识别多个IC配置中的公共误差总线。


关键字:汽车LED  驱动电路 引用地址:汽车LED驱动电路的设计方案

上一篇:半导体激光器面向VCSEL的干法工艺流程解析
下一篇:浅析电子电气架构发展的六阶段

推荐阅读最新更新时间:2024-11-11 17:07

品佳力推基于英飞凌LED驱动器的汽车智能照明解决方案
大联大控股宣布,其旗下品佳力推基于英飞凌(Infineon)TLD5190QV LED驱动器的汽车智能照明解决方案。该方案高效低成本且可以把多个通道输出利用一个LED Driver做到控制四组通道输出。 随着人们对安全行车的需求不断提高,将汽车的近光灯(Low Beam)、远光灯(High Beam)、日间行车灯(DRL)、矩阵式大灯(Matrix)和Pixel照明系统全部整合到前灯将会是未来所有汽车智能型头灯的趋势,目前已经采用智能型头灯为高级车种,如Benz,BMW和Audi等等。 图示1-大联大品佳力推基于英飞凌TLD5190QV LED驱动器的汽车智能照明解决方案架构图 大联大品佳推出英飞凌TLD5190QV
[汽车电子]
品佳力推基于英飞凌<font color='red'>LED</font>驱动器的<font color='red'>汽车</font>智能照明解决方案
基于ISL97684显示LED电源背光驱动电路设计
  Intersil公司的ISL97684是用于中等尺寸TFT-LCD背光的四路LED驱动器,输入电压低到4V,输出电压高达45V.还提供8位PWM 调光,在时的线性度低至0.009%,或30kHz时为1.35%,主要应用在平板PC和笔记本电脑显示LED背光,PMP LED背光。本文介绍了ISL97684主要特性,以及单电源,双电源应用电路和PWM调光应用电路。   I SL97684主要特性:   输入电压4.0 v ~26.5 v Max 45 v的电压输出,输入电压3.0 v~24 v的最大输出电压26.5 v,PWM调光可调线性调光频率与占空因数从0.4%到100% ,30千赫直接PWM调光工作周期线性从0.009%到1
[电源管理]
基于ISL97684显示<font color='red'>LED</font>电源背光<font color='red'>驱动电路</font>设计
变频器驱动电路常见问题及解决方案
近十多年来,随着电力电子技术、微电子技术及现代控制理论向交流电气传动领域的渗透,变频交流调速已逐渐取代了过去的滑差调速、变极调速、直流调速等调速系统。几乎可以说,有交流电动机的地方就有变频器的使用。其最主要的特点是具有高效率的驱动性能及良好的控制特性。   现在通用型的 变频器 一般包括以下几个部分:整流桥、逆变桥、中间直流电路、预充电电路、控制电路、驱动电路等。一台变频器的好坏,驱动电路起着至关重要的作用,现就来谈谈驱动电路常见的问题以及解决的办法。      造成驱动损坏的原因有各种各样的,一般来说出现的问题也无非是U,V,W三相无输出,或者输出不平衡,再或者输出平衡但是在低频的时候抖动,还有启动报警等等。当一台变频器大电容后
[嵌入式]
6位8段数码管动态驱动电路原理图及Keil C51驱动程序
/* 6位数码管演示程序: 显示数码从0---99循环,按 P3.2 按键,显示从 0 开始*/ #i nclude reg52.h int count1s; unsigned int count1m; unsigned char dis_bitcount=0; unsigned char display_o ; unsigned char display_q ; unsigned char code SEG ={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff}; unsigned char dis_bitdriver=0; void del
[单片机]
基于HIP4081的厚膜H桥电机驱动电路设计
       随着电力电子技术的进步和微处理器技术的应用,大大改变了电机控制、电气传动的面貌。形成了一门多学科交叉的“运动控制”技术。运动控制系统能使被控机械运动实现精确的位置控制、速度控制、加速度控制、转矩或力的控制,以及这些被控机械量的综合控制。H桥驱动电路能与主处理器、电机等构成一个完整的运动控制系统,可应用于步进电机、交流电机及直流电机等的运动控制。    1 电机运动控制及其驱动电路   在电机的运动控制中,最常见的是电机的双向转动和调速,流经电机绕组的电流大小和方向要受控。   图1,图2是由4个N沟道MOs管(M1~M4)和一个电机(M)组成的H桥。在图1中,当M1和M4导通时,电流从电源正极经M1从
[电源管理]
基于HIP4081的厚膜H桥电机<font color='red'>驱动电路</font>设计
两相双极步进电机的驱动电路示例分析
先来看两相双极驱动电路的基本框图示例。 可使用双通道的H桥驱动电路来驱动两相双极步进电机。该框图是通过PWM工作进行恒流驱动的电路示例,其工作原理基本上与使用PWM输出方式驱动有刷直流电机相同。 电机电流衰减时的电流再生模式包括Slow Decay(慢速衰减)和Fast Decay(快速衰减)。在有的模式下,电流的跟随性可能会降低,或者可能会引起振动或噪声。针对这种问题,还有一种具有Mix Decay(混合衰减)功能的驱动器,可以从外部调节Slow Decay和Fast Decay的比例。关于电流再生模式,计划在“其2”中进行说明。 下面是两相双极步进电机驱动的2相励磁(Slow Decay时)、1-2相励磁(两相时全
[嵌入式]
两相双极步进电机的<font color='red'>驱动电路</font>示例分析
智能大屏、新能源、LED照明成汽车市场新蓝海
    罗兰贝格近日发布的《全球汽车零部件供应商研究》报告认为,全球轻型汽车的产量预计将在未来两年继续上升,但是增速会大幅下降。其中,欧洲将维持较低水平,日本将有所下降,北美自由贸易区将温和增长,中国仍是惟一的主要增长动力。     不过,2015年中国的车市也从过去每年两位数的增长速度放缓至3%; 放眼海外,全球汽车市场整体仅有1.6%的增速,2016形势依然严峻,仍将延续2015 年微增长趋势,同比增长在4%左右。密云之下还是有阳光透出,2015年新能源车开启爆发性增长期,2015-2020年销量年复合增长42%,而SUV、汽车后市场都将保持强劲势头。     随着汽车向电子化进而智能化发展的风潮扩大蔓延,各种车用电子元
[汽车电子]
基于集成芯片TLE6210和L9349的ABS驱动电路设计
一、引言 随着汽车电子技术的不断发展,防抱死制动系统(ABS)作为现代汽车安全系统的重要组成部分,其性能的稳定性和可靠性对保障行车安全至关重要。ABS驱动电路作为ABS系统的核心部分,其设计质量直接影响到ABS系统的整体性能。本文旨在探讨基于集成芯片TLE6210和L9349的ABS驱动电路设计,以期提高ABS系统的性能和可靠性。 二、ABS系统概述 ABS系统通过电磁阀和回油泵来完成对制动器中轮缸压力的精细调节,以防止过度制动使车轮抱死。由于ABS工作环境十分恶劣,为保证电磁阀和电机响应的高效性和可靠性,对驱动电路的设计提出了严格要求。 三、TLE6210和L9349芯片介绍 TLE6210芯片 TLE6210是Infineon
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved