汽车成像雷达波形选择

发布者:SereneVoyage最新更新时间:2024-11-18 来源: elecfans关键字:汽车成像  TDM 手机看文章 扫描二维码
随时随地手机看文章

汽车雷达成像雷达波形选择,到底是TDM、BPM、DDM,或者是TDMA+DDMA,或者还有其他,一起来看看这篇论文的介绍吧。


1、MIMO波形介绍


当今新兴的4D成像雷达(4D-radar)采用多芯片级联MIMO技术,可在方位角和仰角维度上实现高分辨率,提供高质量的三维点云成像。一般的汽车雷达芯片都有3个发射通道和4个接收通道,因此可以同时采用4芯片级联的MIMO方案,将虚拟阵列扩展到12×16=192个通道。

359e9f92-ed4a-11ed-878e-dac502259ad0.png

使用MIMO技术的汽车雷达中的虚拟阵列合成依赖于不同天线发射的发射信号的分离,目前采用的MIMO 雷达技术有三种模式,分别是TDMA-MIMO、DDMA-MIMO、BPMA-MIMO。


当不同天线的发射信号正交时,分离更容易,实现波形正交性的最简单方法是TDMA-MIMO,故TDMA-MIMO波形因其实现简单和高度正交性而成为目前应用最广泛的方法,但是TDMA-MIMO的缺点是发射功率低导致探测距离受限制,并且最大不模糊速度、距离分辨率与正交信号数量之间存在矛盾关系。虽然后续解决速度模糊问题的算法有很多,但频谱混叠造成的目标检测难度仍然严重,发射天线较多的情况更是雪上加霜。

35a7f7c2-ed4a-11ed-878e-dac502259ad0.png



BPMA-MIMO (相位编码)雷达利用码分多址 (CDMA) 技术,可以在不牺牲发射功率、带宽或线性调频持续时间的情况下有效地实现低互相关波形。由于不存在具有理想自相关和互相关特性的理想正交码序列,因此相位编码波形有时仅近似满足正交性要求。


相位编码MIMO雷达的主要问题是干扰的多普勒FFT将扩散到整个多普勒频谱中,如下图所示。最严重的影响是微弱的目标信号会被淹没在干扰信号中,例如当有卡车和行人在同一距离分辨单元中时,行人很可能无法检测到。

35b292c2-ed4a-11ed-878e-dac502259ad0.png


具有四个天线同时发射的相位编码MIMO的RD谱

(a) Gold序列,长度128

(b) Chu序列,长度128


DDMA-MIMO可以提高雷达探测距离,每个发射通道以一个较小和唯一的频率偏移同时发射相同的斜率的调频信号,这有效地将多普勒频谱中的每个发射信号分离,等效于正交性波形。然而,由于较小的多普勒偏移,导致发射通道间存在耦合,额外扩展的目标很容易重叠。

35bc7cec-ed4a-11ed-878e-dac502259ad0.png

DDMA-MIMO RD谱

(a)同时发射两根天线

(b)同时发射三根天线


尽管在多普勒域中采用不同的多普勒频移调制每个发射阵元来实现波形正交性,但DDM-MIMO雷达技术存在一些缺点,限制了其在汽车雷达中的应用。


在多目标场景中,每个目标将在距离多普勒谱中生成一个真实位置,但在同一距离单元之间伴随着多根发射天线的干扰,当有多个目标在相同距离但速度不同时出现问题,真正的目标和干扰将被混淆。因此,如何缓解多目标场景下干扰带来的误报是关键问题。


三种波形的技术特点如下图所示:


35c82f74-ed4a-11ed-878e-dac502259ad0.png


2、TDM+DDM-MIMO技术


根据上述的介绍和分析,仅仅采用波形正交性技术之一的DDMA或者TDMA来完成4D高分辨率成像汽车雷达的设计几乎是不可能的,因此必须考虑一种综合的方案,该论文设计了一个集成的TDM-DDM-MIMO的框架来获得折衷的性能。


TDM-DDM-MIMO 技术利用了 TDMA 和 DDMA 的最佳波形正交性,多个发射天线同时发射信号也可以降低能量损耗。当采用与ARS540相同的芯片级联MIMO技术时,最多12个发射天线,TDM-DDM-MIMO框架可以设置为2个或更多的发射天线进行DDMA编码,但不建议同时使用4个以上的发射天线进行发射,因为干扰会严重降低目标检测性能。与TDM-MIMO技术相比,TDM-DDM-MIMO中距离多普勒谱所代表的最大不模糊速度将比单Chirp周期内发射的天线数量提高数倍,但干扰的影响会严重一些。

35ce9cba-ed4a-11ed-878e-dac502259ad0.png


采用2个发射天线的TDM-DDM-MIMO汽车波形如上图所示,在两个不同通道的数据上使用多普勒FFT,干扰和目标将分布在多普勒域中,但干扰位于通道之间目标的不同侧,因此可以区分目标和干扰。


有两种特殊情况,一旦多普勒域中两个目标的坐标间距为Na/4或Na/2,Na为慢时间采样点,采用上述目标检测方法会出现虚假目标和真实目标估计不准确的情况。因此,需要添加更多的信息来区分目标和干扰,例如信号幅度、相位信息等。


个人心得:波形设计是4D成像雷达的关键技术之一,可以和天线布局与优化、超分辨算法和跟踪关联合称为4D成像雷达的四大核心技术!


关键字:汽车成像  TDM 引用地址:汽车成像雷达波形选择

上一篇:汽车毫米波雷达的规定和标准(四)
下一篇:电动汽车充电基础设施全方位解析

推荐阅读最新更新时间:2024-11-18 09:56

Echodyne发布突破性成像雷达 赋予自动驾驶汽车感知传感能力
据外媒报道,自动驾驶高性能雷达平台公司Echodyne发布了突破性的自动驾驶汽车成像雷达EchoDrive。EchoDrive以MESA®技术为基础,提供新型的传感器功能,显著提升了机器感知能力。 (图片来源:Echodyne官网) EchoDrive为驾驶场景的探测提供前所未有的实时控制,使机器感知形式更加丰富。该雷达的动态控制API利用自动驾驶堆栈中的资源,如高清地图、V2X和其他传感器数据,通过不断变化的环境、条件和场景,时刻优化测量。例如,EchoDrive可以平稳地从普通驾驶模式切换到交通繁忙区域模式,并且增加帧率,确保无保护左转,或在驶入隧道时,放大画面。这是一种高性能模拟波束引导雷达的动态任务操作,可以提升
[汽车电子]
Echodyne发布突破性<font color='red'>成像</font><font color='red'>雷达</font> 赋予自动驾驶<font color='red'>汽车</font>感知传感能力
新型探测器可实现NIR/SWIR双波段成像 可提高自动驾驶汽车性能
据外媒报道,德国于利希研究中心(Forschungszentrum Jülich)开发了新的探测器(传感器),可使近红外(NIR,750-1400 nm)和SWIR(短波红外,1400 - 2500 nm)范围的红外辐射可见,从而增强摄像头芯片、自动驾驶汽车和智能手机的性能,而且价格更便宜。而传统的光电二极管和可见光提供的可见性和细节识别性能有限,无法做到这一点。 (图片来源:www.laserfocusworld.com) 根据这项研究,该技术是一种双端双频探测器,“在两个不同的红外波段提供偏倚可切换的光谱响应。具体而言,该设备的光响应可通过在NIR波段和SWIR波段之间“颠倒偏压极性”来进行切换。 参与该项研究的
[汽车电子]
新型探测器可实现NIR/SWIR双波段<font color='red'>成像</font> 可提高自动驾驶<font color='red'>汽车</font>性能
Arbe Robotics高分辨率成像雷达采用格芯技术,以实现自动驾驶汽车的安全性
Arbe Robotics专有的芯片组利用格芯的22FDX®技术,为4级和5级自动驾驶提供行业首款实时4D成像雷达 2018年4月26日 —— 格芯宣布, Arbe Robotics 已选择在其开创性的专利成像雷达中采用格芯 22FDX®工艺,这种成像雷达将帮助实现全自动系统功能,并实现更加安全的自动汽车驾驶体验。 Arbe Robotics的雷达是世界首款实时显示1度分辨率的雷达,并在传感器和ADAS技术方面进行了必要的改进。Arbe致力于构建具有高分辨率、能够实现零误报的感应系统,让汽车能够完全依赖雷达提供的数据来做出决定。通过采用格芯的22FDX FD-SOI技术,这种新型芯片组将会增加芯片上的发射和接收通道,并且能
[汽车电子]
Arbe Robotics高分辨率<font color='red'>成像</font><font color='red'>雷达</font>采用格芯技术,以实现自动驾驶<font color='red'>汽车</font>的安全性
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved