1、机器视觉硬件可采集周围环境信息
目前常用的视觉传感器主要有:摄像头、ToF 镜头和激光雷达技术。
机器视觉相机 。机器视觉相机的目的是将通过镜头投影到传感器的图像传送到能够储存、分析和(或者)显示的机器设备上。可以用一个简单的终端显示图像,例如利用计算机系统显示、存储以及分析图像。
激光雷达技术 。激光雷达是一种采用非接触激光测距技术的扫描式传感器,其工作原理与一般的雷达系统类似,通过发射激光光束来探测目标,并通过搜集反射回来的光束来形成点云和获取数据,这些数据经光电处理后可生成为精确的三维立体图像。采用这项技术,可以准确的获取高精度的物理空间环境信息,测距精度可达厘米级。
ToF 摄像头技术 。TOF 是飞行时间(Time of Flight)技术的缩写,即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来。
2、 AI 视觉技术算法帮助机器人识别周围环境
视觉技术包括:人脸技术、物体检测、视觉问答、图像描述、视觉嵌入式技术等。
人脸技术:人脸检测能快速检测人脸并返回人脸框位置,准确识别多种人脸属性;人脸比对通过提取人脸的特征,计算两张人脸的相似度并给出相似度百分比;人脸查找是在一个指定人脸库中查找相似的人脸;给定一张照片,与指定人脸库中的 N 个人脸进行比对,找出最相似的一张脸或多张人脸。根据待识别人脸与现有人脸库中的人脸匹配程度,返回用户信息和匹配度,即 1:N 人脸检索。
物体检测:基于深度学习及大规模图像训练的物体检测技术,可准确识别图片中的物体类别、位置、置信度等综合信息。
视觉问答:视觉问答(VQA)系统可将图片和问题作为输入,产生一条人类语言作为输出。
图像描述:需要能够抓住图像的语义信息,并生成人类可读的句子。
视觉嵌入式技术:包括人体检测跟踪、场景识别等。
3、 SLAM 技术赋予机器人更好的规划移动的能力
SLAM,全称叫做 Simultaneous Localization and Mapping,中文叫做同时定位与建图。在SLAM 理论中,第一个问题称为定位(Localization),第二个称为建图(Mapping),第三个则是随后的路径规划。通过机器视觉的映射,机器人可以通过复杂的算法同时定位并绘制出位置环境的地图,通过 SLAM 技术可以有效解决规划不合理,路径规划无法覆盖所有地区,导致清洁效果一般的问题。
▲SLAM 技术
当完全不含 SLAM 的时候,由于没有地图没有路径规划,扫地机器人每次碰到障碍物会沿着随机方向折返,无法覆盖到每一个区域。当有 SLAM 的时候,可覆盖至任意区域。此外,扫地机器人还配备摄像头,用来识别鞋、袜子、动物粪便等物品,达到智能规避。
4、基于 ToF 机器视觉的超宽带定位技术
机器人中,基于 ToF 技术,主要可用来进行高精度测距与定位,目前常用的就是超宽带定位技术。
UWB(超宽带)是一种无线通信技术,可用于高精度测距与定位。UWB 传感器精简设备分为标签和基站两种。其基本工作方式是采用 TOF(Time of flight)的方式来进行无线测距,根据测距值快速准确计算出位置。
5、 AI 自然语言处理是人机交互的重要技术
人类获取信息的手段中 90%依靠视觉,但表达自己的方式 90%依靠语言。语言是人机交互中最自然的方式。但是自然语言处理 NLP 的难度很大,在语法、语义、文化中均存在差异,还有方言等非标准的语言产生。随着 NLP 的成熟,人类与机器的语音交互越来越便捷,也将推动机器人向更“智能化”发展。
机器人的阵列式麦克风和扬声器技术已经比较成熟,随着近年智能音箱+语音助手的快速发展,麦克风阵列和微型扬声器被广泛使用。 在钢铁侠陪伴机器人中,与用户的语音交互都依靠麦克风阵列和扬声器,此类陪伴机器人就如同会动的“智能音箱”,拓展了边界形态。
目前对话机器人可分为通用对话机器人和专业领域对话机器人。自然语言处理的技术发展,将提升机器人与人类的交互体验,让机器人显得更为“智能”。
6、 AI 深度学习算法帮助机器人向产生自我意识中进化
硬件:AI 芯片技术的发展,使机器人拥有更高算力。 由于摩尔定律的发展,单位面积芯片容纳的晶体管个数不断增长,推动芯片小型化和 AI算力的提升。此外,异构芯片如 RISC-V 架构芯片的产生,也为 AI 芯片的算力提升提供了硬件支持。
算法:AI 深度学习算法是机器人的未来 。AI 深度学习算法给予机器人通过输入变量学习的能力。未来的机器人能否拥有自主意识,需要 AI 技术的不断发展。 深度学习算法给机器人获得自我意识提出了一种可能性。通过对神经网络模型的训练,一些算法已经可以在单点的领域超越人类,Alpha Go 的成功,让我们看到人类在 AI 技术中,已可实现单类别的自我学习能力,并在一些领域,如“围棋、德州扑克、知识竞赛”等单个领域已经可以媲美甚至打败人类。
AI 深度学习算法,使机器人拥有了智能决策的能力,摆脱了之前单一输入对应单一输出的编程逻辑,也让机器人更加“智能”。 但是,机器人在“多模态”领域,仍无法与人类媲美。特别是如嗅觉、味觉、触觉、心理学等无法量化的信号,仍未能找到合理的量化方式。
7、 AI+5G 拓展机器人的活动边界,提供更大算力和更多存储空间,形成知识共享
4G 时代,移动机器人的四大痛点 :
1)工作范围受限:只能在固定的范围内执行任务,构建的地图不便于共享,难以在大尺度环境下工作。
2) 业务覆盖受限:运算有限,识别性能仍需提升;能力有限,仅能发现问题,难以快速批量部署。
3) 提供服务受限:复杂业务能力差,交互能力有待提高,特种业务部署效率低。
4) 运维成本高:部署效率低,每个场景都需构建地图,规划路径;,配备巡检任务等。
这四大痛点,制约了移动机器人在 4G 时代的渗透。总体来说,就是机器人仍需要更多的存储空间和更强的运算能力。5G 的低延时、高速率、广连接将能够解决目前的这些痛点。
5G 对于移动机器人的赋能:
1)拓展机器人的工作范围 。5G 对于机器人的最大赋能就是拓展了机器人的物理边界,5G 对于 TSN(时间敏感网络)的支持,使机器人的活动边界从家庭走向社会的方方面面。我们大可以想象未来人类与机器人共同生活的场景。在物流、零售、巡检、安保、消防、指挥交通、医疗等方面,5G 和 AI 都能够赋能机器人,帮助人类实现智慧城市。
2) 为机器人提供更大算力和更多存储空间,形成知识共享。5G 对云机器人的推动,为机器人提供更大算力和更多存储空间:弹性分配计算资源:满足复杂环境中的同步定位和制图。访问大量数据库:识别和抓取物体;基于外包地图的长期定位。形成知识共享 :多机器人间形成知识共享。
上一篇:奥迪与空中客车公司暂停研发飞行出租车
下一篇:风口过后,仓储自动化真的走向“理性”了吗?
推荐阅读
史海拾趣
1992年,Bussmann开始了第一款芯片保险丝的开发工作。这款保险丝将可熔性材料沉降到陶瓷基底上,大小只有3mm*1.5mm,可以通过自动装配机安装到印刷电路板上。这一创新不仅大大提高了熔断器的性能和可靠性,还降低了生产成本,为电子行业的发展注入了新的活力。
随着技术的不断进步和市场的不断扩大,ARMKEIL Microcontroller Tools公司开始实施全球化战略。公司不仅在欧洲和美国设立了研发中心和销售网络,还积极开拓亚洲市场,与多个国家和地区的合作伙伴建立了紧密的合作关系。通过全球化布局和市场拓展,ARMKEIL Microcontroller Tools公司的业务范围不断扩大,品牌影响力也逐渐提升。
这五个故事只是ARMKEIL Microcontroller Tools公司发展过程中的一部分。实际上,该公司的成长历程充满了无数的挑战和机遇。正是凭借着对技术的不断追求和对市场的敏锐洞察,ARMKEIL Microcontroller Tools公司才能在激烈的竞争中脱颖而出,成为嵌入式系统开发工具领域的佼佼者。
随着技术实力的不断增强,达利凯普开始积极拓展国际市场。公司的产品广泛应用于医疗核磁共振设备、半导体设备、工业激光设备、测量及分析设备、高速铁路、5G通信等高端制造领域。凭借卓越的产品质量和可靠的性能,达利凯普成功进入了美国、日本、英国、法国、德国等40多个国家和地区的市场,并与西门子医疗、通用电气、安捷伦等世界知名企业建立了长期稳定的合作关系。
进入千禧年代,随着全球经济的融合和科技的快速发展,ITT Industries看中了C&K在开关领域的领先地位和强大实力,决定对其进行收购。这次并购使C&K成为ITT的开关部门,但公司仍然保留了C&K的名称和品牌。并购后的C&K借助ITT的全球资源和平台优势,进一步提升了自身的研发能力和市场竞争力,实现了更快速的发展。
Digi International一直致力于技术创新和产品扩展。公司提供的无线产品、云计算平台以及开发服务在业界享有盛誉。为了满足不同客户的需求,Digi不断推出新产品,如无线XBee®模块,这些产品被广泛应用于各种领域,如智能交通系统、无人机控制等。
在21世纪初,电子科技正处于蓬勃发展的时期。李华,一位在电子行业摸爬滚打多年的工程师,决定创立自己的公司——华宇创,专注于智能电子设备的研发和生产。创业初期,华宇创面临着资金短缺、技术瓶颈等诸多挑战。然而,李华凭借对技术的热情和坚定的信念,带领团队日夜兼程地研发新产品,最终成功推出了首款具有竞争力的智能手环,获得了市场的初步认可。
出处: 慧聪网 2006年06月22日,北京讯 近日,世界第12大IC设计公司凌阳科技(SUNPLUS)宣布:将向市场推出一款语音特色的16位工业级单片机——SPCE062A,该芯片具有非常优秀的语音处理功能。 凌阳SPCE062A采用高性能u ...… 查看全部问答∨ |
仅献给想做程序员但还在迷惘和摸索中的朋友! 因为爱,所以爱 ----仅献给想做程序员但还在迷惘和摸索中的朋友(欢迎跟贴) 自从上大学选择了计算机专业后,我就深深地热爱上了软件开发,并已经立志把自己的 毕生精力都奉献给软件开发事业.一直以 ...… 查看全部问答∨ |
程序: #include <reg51.h> #include <stdio.h> main() { SCON = 0x52; TMOD = 0x20; TCON = 0x69 TH1 = 0xf3; printf("text to output some words\\n"); } 报错:TEXT2.C(10): 错误 C141: syntax error near \'TH1\' &nbs ...… 查看全部问答∨ |
|
在Redboot下更新zImage文件,写入到1M,启动内核后,使用dd if=/dev/mtdblock1 of=kernel.img bs=512 count=4578 读取nand flash该区域内容,使用ultraedit比较zImage和kernel.img,数据有不一样的地方,只是个别字节不一样。 同样,在内核下写入c ...… 查看全部问答∨ |
小弟将windml里input里pointer设置为Microsoft Serial,然后用的是/tyCo/3,已经把windml组件中的serial mouse选择上了,可是连上串口鼠标后用ugldemo测试时却没有反应。 我的/tyCo/3是通过st16c554扩展出来的串口,通过sp213EEA进行的电平转换。 ...… 查看全部问答∨ |