加入交流群  

扫一扫,添加管理员微信
备注:参考设计,即可被拉入群
和也在搞设计小伙伴们碰一碰

收藏 

评论 

太白金星 发布

MAXREFDES9001:使用 DS28S60 和 Google Cloud 保护 IoT LoRa 传感器节点

MAXREFDES9001: Secured IoT LoRa Sensor Nodes using the DS28S60 and Google Cloud

 
设计简介

The MAXREFDES9001 is a complete Internet-of-Things (IoT) security reference design featuring a LoRa radio based, low-power, temperature sensor node secured with a DS28S60 secure co-processor, a LoRa gateway, and a Google Cloud application. This reference design showcases a robust and easy to manage end-to-end security scheme with authentication and confidentiality capabilities independent of the transmission link in use—the LoRaWAN protocol in this case. The MAXREFDES9001 is designed to easily integrate into embedded systems enabling confidentiality, authentication, and integrity of information.

The sensor node is motioned by the tiny, low-power, Cortex-M4 based microcontroller MAX32660 which periodically measures the ambient temperature with the help of the DS7505, authenticates and encrypts the temperature value using AES-GCM with the DS28S60 secure coprocessor, and sends it to the Google Cloud application over a LoRaWAN network, via a Raspberry Pi powered gateway. To prevent rogue nodes from publishing data, joining the nodes to the network requires a prior local verification using a convenient NFC based strong authentication with help of the MAX66242 Secure Authenticator and a dedicated Android application running on an NFC enabled Android device. Once this strong authentication is successful, proving that the node device is genuine, the Android device communicates with the Google Cloud application via Internet to provision the node device, that is, to generate a certificate for the node device and perform a AES-GCM key exchange between that device and the Google Cloud application. The Android device uses the MAX66242 as a NFC bridge in order to communicate with the node device’s microcontroller application and ultimately store the certificate into the DS28S60 co-processor, and have the key exchange done between the DS28S60 and the Google Cloud application, using the ECDH protocol. Once this step is achieved, the node device is ready to send its data to the cloud using the negotiated AES-GCM key. Further node authentication by the Cloud is possible using ECDSA since the node now has a valid certificate with a matching key pair. Incidentally, the provisioning process also joins the sensor node to the LoRaWAN network implemented using the ChirpStack solution, but this is not the main purpose of the reference design that exhibits a way to secure data without relying on the security of the various underlying communication links.

特征

Maxim’s DS28S60 ChipDNA™ technology protects private and secret keys against invasive attacks.
Maxim’s DS28S60 provides end-to-end security using hardware-based ECDSA authentication, ECDH key exchange and AES-GCM authenticated encryption.
Complete low-power sensor node board design
Sample LoRaWAN gateway implementation based on Raspberry Pi
Sample Google Cloud application showcasing end-to-end security with the sensor board’s DS28S60 including ECDH key exchange, and AES-GCM secure communication
Source code
Peripheral Module - compatible sensor expansion port
Raspberry Pi enables portable LoRaWAN Gateway deployment

参考设计图片
×

!注意:请使用浏览器自带下载,迅雷等下载软件可能无法下载到有效资源。

 
群聊设计,与管理员及时沟通

欢迎加入EEWorld参考设计群,也许能碰到搞同一个设计的小伙伴,群聊设计经验和难点。 入群方式:微信搜索“helloeeworld”或者扫描二维码,备注:参考设计,即可被拉入群。 另外,如您在下载此设计遇到问题,也可以微信添加“helloeeworld”及时沟通。

 
查找数据手册?

EEWorld Datasheet 技术支持

论坛推荐 更多
更新时间2024-11-19 18:16:35

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

EEWORLD参考设计中心

站点相关: TI培训 德州仪器(TI)官方视频课程培训

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved